| Step |
Hyp |
Ref |
Expression |
| 1 |
|
comptiunov2.x |
|
| 2 |
|
comptiunov2.y |
|
| 3 |
|
comptiunov2.z |
|
| 4 |
|
comptiunov2.i |
|
| 5 |
|
comptiunov2.j |
|
| 6 |
|
comptiunov2.k |
|
| 7 |
|
comptiunov2.1 |
|
| 8 |
|
comptiunov2.2 |
|
| 9 |
|
comptiunov2.3 |
|
| 10 |
1
|
funmpt2 |
|
| 11 |
2
|
funmpt2 |
|
| 12 |
|
funco |
|
| 13 |
10 11 12
|
mp2an |
|
| 14 |
3
|
funmpt2 |
|
| 15 |
|
ssv |
|
| 16 |
|
ovex |
|
| 17 |
4 16
|
iunex |
|
| 18 |
17 1
|
dmmpti |
|
| 19 |
15 18
|
sseqtrri |
|
| 20 |
|
dmcosseq |
|
| 21 |
19 20
|
ax-mp |
|
| 22 |
|
ovex |
|
| 23 |
5 22
|
iunex |
|
| 24 |
23 2
|
dmmpti |
|
| 25 |
21 24
|
eqtri |
|
| 26 |
4 5
|
unex |
|
| 27 |
6 26
|
eqeltri |
|
| 28 |
|
ovex |
|
| 29 |
27 28
|
iunex |
|
| 30 |
29 3
|
dmmpti |
|
| 31 |
25 30
|
eqtr4i |
|
| 32 |
|
vex |
|
| 33 |
32 24
|
eleqtrri |
|
| 34 |
|
fvco |
|
| 35 |
11 33 34
|
mp2an |
|
| 36 |
|
oveq1 |
|
| 37 |
36
|
iuneq2d |
|
| 38 |
|
ovex |
|
| 39 |
5 38
|
iunex |
|
| 40 |
37 2 39
|
fvmpt |
|
| 41 |
40
|
elv |
|
| 42 |
41
|
fveq2i |
|
| 43 |
|
oveq1 |
|
| 44 |
43
|
iuneq2d |
|
| 45 |
|
ovex |
|
| 46 |
4 45
|
iunex |
|
| 47 |
44 1 46
|
fvmpt |
|
| 48 |
39 47
|
ax-mp |
|
| 49 |
35 42 48
|
3eqtri |
|
| 50 |
|
oveq1 |
|
| 51 |
50
|
iuneq2d |
|
| 52 |
|
ovex |
|
| 53 |
27 52
|
iunex |
|
| 54 |
51 3 53
|
fvmpt |
|
| 55 |
54
|
elv |
|
| 56 |
49 55
|
eqeq12i |
|
| 57 |
25 56
|
raleqbii |
|
| 58 |
|
iunxun |
|
| 59 |
7 8
|
unssi |
|
| 60 |
58 59
|
eqsstri |
|
| 61 |
9 60
|
eqssi |
|
| 62 |
|
iuneq1 |
|
| 63 |
6 62
|
ax-mp |
|
| 64 |
61 63
|
eqtr4i |
|
| 65 |
64
|
a1i |
|
| 66 |
57 65
|
mprgbir |
|
| 67 |
|
eqfunfv |
|
| 68 |
67
|
biimprd |
|
| 69 |
31 66 68
|
mp2ani |
|
| 70 |
13 14 69
|
mp2an |
|