Metamath Proof Explorer


Theorem raleqbii

Description: Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses raleqbii.1 A=B
raleqbii.2 ψχ
Assertion raleqbii xAψxBχ

Proof

Step Hyp Ref Expression
1 raleqbii.1 A=B
2 raleqbii.2 ψχ
3 1 eleq2i xAxB
4 3 2 imbi12i xAψxBχ
5 4 ralbii2 xAψxBχ