Metamath Proof Explorer


Theorem corclrcl

Description: The reflexive closure is idempotent. (Contributed by RP, 13-Jun-2020)

Ref Expression
Assertion corclrcl r* r* = r*

Proof

Step Hyp Ref Expression
1 dfrcl4 r* = a V i 0 1 a r i
2 dfrcl4 r* = b V j 0 1 b r j
3 dfrcl4 r* = c V k 0 1 c r k
4 prex 0 1 V
5 unidm 0 1 0 1 = 0 1
6 5 eqcomi 0 1 = 0 1 0 1
7 oveq2 k = j d r k = d r j
8 7 cbviunv k 0 1 d r k = j 0 1 d r j
9 1ex 1 V
10 oveq2 i = 1 j 0 1 d r j r i = j 0 1 d r j r 1
11 9 10 iunxsn i 1 j 0 1 d r j r i = j 0 1 d r j r 1
12 ovex d r j V
13 4 12 iunex j 0 1 d r j V
14 relexp1g j 0 1 d r j V j 0 1 d r j r 1 = j 0 1 d r j
15 13 14 ax-mp j 0 1 d r j r 1 = j 0 1 d r j
16 11 15 eqtri i 1 j 0 1 d r j r i = j 0 1 d r j
17 16 eqcomi j 0 1 d r j = i 1 j 0 1 d r j r i
18 8 17 eqtri k 0 1 d r k = i 1 j 0 1 d r j r i
19 snsspr2 1 0 1
20 iunss1 1 0 1 i 1 j 0 1 d r j r i i 0 1 j 0 1 d r j r i
21 19 20 ax-mp i 1 j 0 1 d r j r i i 0 1 j 0 1 d r j r i
22 18 21 eqsstri k 0 1 d r k i 0 1 j 0 1 d r j r i
23 c0ex 0 V
24 23 prid1 0 0 1
25 oveq2 k = 0 d r k = d r 0
26 25 ssiun2s 0 0 1 d r 0 k 0 1 d r k
27 24 26 ax-mp d r 0 k 0 1 d r k
28 oveq2 j = k d r j = d r k
29 28 cbviunv j 0 1 d r j = k 0 1 d r k
30 29 eqimssi j 0 1 d r j k 0 1 d r k
31 unss12 d r 0 k 0 1 d r k j 0 1 d r j k 0 1 d r k d r 0 j 0 1 d r j k 0 1 d r k k 0 1 d r k
32 27 30 31 mp2an d r 0 j 0 1 d r j k 0 1 d r k k 0 1 d r k
33 df-pr 0 1 = 0 1
34 iuneq1 0 1 = 0 1 i 0 1 j 0 1 d r j r i = i 0 1 j 0 1 d r j r i
35 33 34 ax-mp i 0 1 j 0 1 d r j r i = i 0 1 j 0 1 d r j r i
36 iunxun i 0 1 j 0 1 d r j r i = i 0 j 0 1 d r j r i i 1 j 0 1 d r j r i
37 oveq2 i = 0 j 0 1 d r j r i = j 0 1 d r j r 0
38 23 37 iunxsn i 0 j 0 1 d r j r i = j 0 1 d r j r 0
39 vex d V
40 0nn0 0 0
41 1nn0 1 0
42 prssi 0 0 1 0 0 1 0
43 40 41 42 mp2an 0 1 0
44 24 24 elini 0 0 1 0 1
45 44 ne0ii 0 1 0 1
46 iunrelexp0 d V 0 1 0 0 1 0 1 j 0 1 d r j r 0 = d r 0
47 39 43 45 46 mp3an j 0 1 d r j r 0 = d r 0
48 38 47 eqtri i 0 j 0 1 d r j r i = d r 0
49 48 16 uneq12i i 0 j 0 1 d r j r i i 1 j 0 1 d r j r i = d r 0 j 0 1 d r j
50 36 49 eqtri i 0 1 j 0 1 d r j r i = d r 0 j 0 1 d r j
51 35 50 eqtri i 0 1 j 0 1 d r j r i = d r 0 j 0 1 d r j
52 iunxun k 0 1 0 1 d r k = k 0 1 d r k k 0 1 d r k
53 32 51 52 3sstr4i i 0 1 j 0 1 d r j r i k 0 1 0 1 d r k
54 1 2 3 4 4 6 22 22 53 comptiunov2i r* r* = r*