Step |
Hyp |
Ref |
Expression |
1 |
|
iunrelexpmin1.def |
|
2 |
|
simplr |
|
3 |
|
simpr |
|
4 |
3
|
oveq1d |
|
5 |
2 4
|
iuneq12d |
|
6 |
|
elex |
|
7 |
6
|
adantr |
|
8 |
|
nnex |
|
9 |
|
ovex |
|
10 |
8 9
|
iunex |
|
11 |
10
|
a1i |
|
12 |
1 5 7 11
|
fvmptd2 |
|
13 |
|
relexp1g |
|
14 |
13
|
sseq1d |
|
15 |
14
|
anbi1d |
|
16 |
|
oveq2 |
|
17 |
16
|
sseq1d |
|
18 |
17
|
imbi2d |
|
19 |
|
oveq2 |
|
20 |
19
|
sseq1d |
|
21 |
20
|
imbi2d |
|
22 |
|
oveq2 |
|
23 |
22
|
sseq1d |
|
24 |
23
|
imbi2d |
|
25 |
|
oveq2 |
|
26 |
25
|
sseq1d |
|
27 |
26
|
imbi2d |
|
28 |
|
simprl |
|
29 |
|
simp1 |
|
30 |
|
1nn |
|
31 |
30
|
a1i |
|
32 |
|
simp2l |
|
33 |
|
relexpaddnn |
|
34 |
29 31 32 33
|
syl3anc |
|
35 |
|
simp2rr |
|
36 |
|
simp3 |
|
37 |
|
simp2rl |
|
38 |
35 36 37
|
trrelssd |
|
39 |
34 38
|
eqsstrrd |
|
40 |
39
|
3exp |
|
41 |
40
|
a2d |
|
42 |
18 21 24 27 28 41
|
nnind |
|
43 |
42
|
com12 |
|
44 |
43
|
ralrimiv |
|
45 |
|
iunss |
|
46 |
44 45
|
sylibr |
|
47 |
46
|
ex |
|
48 |
15 47
|
sylbird |
|
49 |
48
|
adantr |
|
50 |
|
sseq1 |
|
51 |
50
|
imbi2d |
|
52 |
49 51
|
syl5ibr |
|
53 |
12 52
|
mpcom |
|
54 |
53
|
alrimiv |
|