Step |
Hyp |
Ref |
Expression |
1 |
|
iunrelexpmin1.def |
|- C = ( r e. _V |-> U_ n e. N ( r ^r n ) ) |
2 |
|
simplr |
|- ( ( ( R e. V /\ N = NN ) /\ r = R ) -> N = NN ) |
3 |
|
simpr |
|- ( ( ( R e. V /\ N = NN ) /\ r = R ) -> r = R ) |
4 |
3
|
oveq1d |
|- ( ( ( R e. V /\ N = NN ) /\ r = R ) -> ( r ^r n ) = ( R ^r n ) ) |
5 |
2 4
|
iuneq12d |
|- ( ( ( R e. V /\ N = NN ) /\ r = R ) -> U_ n e. N ( r ^r n ) = U_ n e. NN ( R ^r n ) ) |
6 |
|
elex |
|- ( R e. V -> R e. _V ) |
7 |
6
|
adantr |
|- ( ( R e. V /\ N = NN ) -> R e. _V ) |
8 |
|
nnex |
|- NN e. _V |
9 |
|
ovex |
|- ( R ^r n ) e. _V |
10 |
8 9
|
iunex |
|- U_ n e. NN ( R ^r n ) e. _V |
11 |
10
|
a1i |
|- ( ( R e. V /\ N = NN ) -> U_ n e. NN ( R ^r n ) e. _V ) |
12 |
1 5 7 11
|
fvmptd2 |
|- ( ( R e. V /\ N = NN ) -> ( C ` R ) = U_ n e. NN ( R ^r n ) ) |
13 |
|
relexp1g |
|- ( R e. V -> ( R ^r 1 ) = R ) |
14 |
13
|
sseq1d |
|- ( R e. V -> ( ( R ^r 1 ) C_ s <-> R C_ s ) ) |
15 |
14
|
anbi1d |
|- ( R e. V -> ( ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) <-> ( R C_ s /\ ( s o. s ) C_ s ) ) ) |
16 |
|
oveq2 |
|- ( x = 1 -> ( R ^r x ) = ( R ^r 1 ) ) |
17 |
16
|
sseq1d |
|- ( x = 1 -> ( ( R ^r x ) C_ s <-> ( R ^r 1 ) C_ s ) ) |
18 |
17
|
imbi2d |
|- ( x = 1 -> ( ( ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) -> ( R ^r x ) C_ s ) <-> ( ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) -> ( R ^r 1 ) C_ s ) ) ) |
19 |
|
oveq2 |
|- ( x = y -> ( R ^r x ) = ( R ^r y ) ) |
20 |
19
|
sseq1d |
|- ( x = y -> ( ( R ^r x ) C_ s <-> ( R ^r y ) C_ s ) ) |
21 |
20
|
imbi2d |
|- ( x = y -> ( ( ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) -> ( R ^r x ) C_ s ) <-> ( ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) -> ( R ^r y ) C_ s ) ) ) |
22 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( R ^r x ) = ( R ^r ( y + 1 ) ) ) |
23 |
22
|
sseq1d |
|- ( x = ( y + 1 ) -> ( ( R ^r x ) C_ s <-> ( R ^r ( y + 1 ) ) C_ s ) ) |
24 |
23
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) -> ( R ^r x ) C_ s ) <-> ( ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) -> ( R ^r ( y + 1 ) ) C_ s ) ) ) |
25 |
|
oveq2 |
|- ( x = n -> ( R ^r x ) = ( R ^r n ) ) |
26 |
25
|
sseq1d |
|- ( x = n -> ( ( R ^r x ) C_ s <-> ( R ^r n ) C_ s ) ) |
27 |
26
|
imbi2d |
|- ( x = n -> ( ( ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) -> ( R ^r x ) C_ s ) <-> ( ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) -> ( R ^r n ) C_ s ) ) ) |
28 |
|
simprl |
|- ( ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) -> ( R ^r 1 ) C_ s ) |
29 |
|
simp1 |
|- ( ( y e. NN /\ ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) /\ ( R ^r y ) C_ s ) -> y e. NN ) |
30 |
|
1nn |
|- 1 e. NN |
31 |
30
|
a1i |
|- ( ( y e. NN /\ ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) /\ ( R ^r y ) C_ s ) -> 1 e. NN ) |
32 |
|
simp2l |
|- ( ( y e. NN /\ ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) /\ ( R ^r y ) C_ s ) -> R e. V ) |
33 |
|
relexpaddnn |
|- ( ( y e. NN /\ 1 e. NN /\ R e. V ) -> ( ( R ^r y ) o. ( R ^r 1 ) ) = ( R ^r ( y + 1 ) ) ) |
34 |
29 31 32 33
|
syl3anc |
|- ( ( y e. NN /\ ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) /\ ( R ^r y ) C_ s ) -> ( ( R ^r y ) o. ( R ^r 1 ) ) = ( R ^r ( y + 1 ) ) ) |
35 |
|
simp2rr |
|- ( ( y e. NN /\ ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) /\ ( R ^r y ) C_ s ) -> ( s o. s ) C_ s ) |
36 |
|
simp3 |
|- ( ( y e. NN /\ ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) /\ ( R ^r y ) C_ s ) -> ( R ^r y ) C_ s ) |
37 |
|
simp2rl |
|- ( ( y e. NN /\ ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) /\ ( R ^r y ) C_ s ) -> ( R ^r 1 ) C_ s ) |
38 |
35 36 37
|
trrelssd |
|- ( ( y e. NN /\ ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) /\ ( R ^r y ) C_ s ) -> ( ( R ^r y ) o. ( R ^r 1 ) ) C_ s ) |
39 |
34 38
|
eqsstrrd |
|- ( ( y e. NN /\ ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) /\ ( R ^r y ) C_ s ) -> ( R ^r ( y + 1 ) ) C_ s ) |
40 |
39
|
3exp |
|- ( y e. NN -> ( ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) -> ( ( R ^r y ) C_ s -> ( R ^r ( y + 1 ) ) C_ s ) ) ) |
41 |
40
|
a2d |
|- ( y e. NN -> ( ( ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) -> ( R ^r y ) C_ s ) -> ( ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) -> ( R ^r ( y + 1 ) ) C_ s ) ) ) |
42 |
18 21 24 27 28 41
|
nnind |
|- ( n e. NN -> ( ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) -> ( R ^r n ) C_ s ) ) |
43 |
42
|
com12 |
|- ( ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) -> ( n e. NN -> ( R ^r n ) C_ s ) ) |
44 |
43
|
ralrimiv |
|- ( ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) -> A. n e. NN ( R ^r n ) C_ s ) |
45 |
|
iunss |
|- ( U_ n e. NN ( R ^r n ) C_ s <-> A. n e. NN ( R ^r n ) C_ s ) |
46 |
44 45
|
sylibr |
|- ( ( R e. V /\ ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) ) -> U_ n e. NN ( R ^r n ) C_ s ) |
47 |
46
|
ex |
|- ( R e. V -> ( ( ( R ^r 1 ) C_ s /\ ( s o. s ) C_ s ) -> U_ n e. NN ( R ^r n ) C_ s ) ) |
48 |
15 47
|
sylbird |
|- ( R e. V -> ( ( R C_ s /\ ( s o. s ) C_ s ) -> U_ n e. NN ( R ^r n ) C_ s ) ) |
49 |
48
|
adantr |
|- ( ( R e. V /\ N = NN ) -> ( ( R C_ s /\ ( s o. s ) C_ s ) -> U_ n e. NN ( R ^r n ) C_ s ) ) |
50 |
|
sseq1 |
|- ( ( C ` R ) = U_ n e. NN ( R ^r n ) -> ( ( C ` R ) C_ s <-> U_ n e. NN ( R ^r n ) C_ s ) ) |
51 |
50
|
imbi2d |
|- ( ( C ` R ) = U_ n e. NN ( R ^r n ) -> ( ( ( R C_ s /\ ( s o. s ) C_ s ) -> ( C ` R ) C_ s ) <-> ( ( R C_ s /\ ( s o. s ) C_ s ) -> U_ n e. NN ( R ^r n ) C_ s ) ) ) |
52 |
49 51
|
syl5ibr |
|- ( ( C ` R ) = U_ n e. NN ( R ^r n ) -> ( ( R e. V /\ N = NN ) -> ( ( R C_ s /\ ( s o. s ) C_ s ) -> ( C ` R ) C_ s ) ) ) |
53 |
12 52
|
mpcom |
|- ( ( R e. V /\ N = NN ) -> ( ( R C_ s /\ ( s o. s ) C_ s ) -> ( C ` R ) C_ s ) ) |
54 |
53
|
alrimiv |
|- ( ( R e. V /\ N = NN ) -> A. s ( ( R C_ s /\ ( s o. s ) C_ s ) -> ( C ` R ) C_ s ) ) |