Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( x = 1 -> ( ( R ^r J ) ^r x ) = ( ( R ^r J ) ^r 1 ) ) |
2 |
|
oveq2 |
|- ( x = 1 -> ( J x. x ) = ( J x. 1 ) ) |
3 |
2
|
oveq2d |
|- ( x = 1 -> ( R ^r ( J x. x ) ) = ( R ^r ( J x. 1 ) ) ) |
4 |
1 3
|
eqeq12d |
|- ( x = 1 -> ( ( ( R ^r J ) ^r x ) = ( R ^r ( J x. x ) ) <-> ( ( R ^r J ) ^r 1 ) = ( R ^r ( J x. 1 ) ) ) ) |
5 |
4
|
imbi2d |
|- ( x = 1 -> ( ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r x ) = ( R ^r ( J x. x ) ) ) <-> ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r 1 ) = ( R ^r ( J x. 1 ) ) ) ) ) |
6 |
|
oveq2 |
|- ( x = y -> ( ( R ^r J ) ^r x ) = ( ( R ^r J ) ^r y ) ) |
7 |
|
oveq2 |
|- ( x = y -> ( J x. x ) = ( J x. y ) ) |
8 |
7
|
oveq2d |
|- ( x = y -> ( R ^r ( J x. x ) ) = ( R ^r ( J x. y ) ) ) |
9 |
6 8
|
eqeq12d |
|- ( x = y -> ( ( ( R ^r J ) ^r x ) = ( R ^r ( J x. x ) ) <-> ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) ) |
10 |
9
|
imbi2d |
|- ( x = y -> ( ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r x ) = ( R ^r ( J x. x ) ) ) <-> ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) ) ) |
11 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( ( R ^r J ) ^r x ) = ( ( R ^r J ) ^r ( y + 1 ) ) ) |
12 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( J x. x ) = ( J x. ( y + 1 ) ) ) |
13 |
12
|
oveq2d |
|- ( x = ( y + 1 ) -> ( R ^r ( J x. x ) ) = ( R ^r ( J x. ( y + 1 ) ) ) ) |
14 |
11 13
|
eqeq12d |
|- ( x = ( y + 1 ) -> ( ( ( R ^r J ) ^r x ) = ( R ^r ( J x. x ) ) <-> ( ( R ^r J ) ^r ( y + 1 ) ) = ( R ^r ( J x. ( y + 1 ) ) ) ) ) |
15 |
14
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r x ) = ( R ^r ( J x. x ) ) ) <-> ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r ( y + 1 ) ) = ( R ^r ( J x. ( y + 1 ) ) ) ) ) ) |
16 |
|
oveq2 |
|- ( x = K -> ( ( R ^r J ) ^r x ) = ( ( R ^r J ) ^r K ) ) |
17 |
|
oveq2 |
|- ( x = K -> ( J x. x ) = ( J x. K ) ) |
18 |
17
|
oveq2d |
|- ( x = K -> ( R ^r ( J x. x ) ) = ( R ^r ( J x. K ) ) ) |
19 |
16 18
|
eqeq12d |
|- ( x = K -> ( ( ( R ^r J ) ^r x ) = ( R ^r ( J x. x ) ) <-> ( ( R ^r J ) ^r K ) = ( R ^r ( J x. K ) ) ) ) |
20 |
19
|
imbi2d |
|- ( x = K -> ( ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r x ) = ( R ^r ( J x. x ) ) ) <-> ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r ( J x. K ) ) ) ) ) |
21 |
|
ovexd |
|- ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( R ^r J ) e. _V ) |
22 |
21
|
relexp1d |
|- ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r 1 ) = ( R ^r J ) ) |
23 |
|
simp1 |
|- ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> J e. NN ) |
24 |
|
nnre |
|- ( J e. NN -> J e. RR ) |
25 |
|
ax-1rid |
|- ( J e. RR -> ( J x. 1 ) = J ) |
26 |
23 24 25
|
3syl |
|- ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( J x. 1 ) = J ) |
27 |
26
|
eqcomd |
|- ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> J = ( J x. 1 ) ) |
28 |
27
|
oveq2d |
|- ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( R ^r J ) = ( R ^r ( J x. 1 ) ) ) |
29 |
22 28
|
eqtrd |
|- ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r 1 ) = ( R ^r ( J x. 1 ) ) ) |
30 |
|
ovex |
|- ( R ^r J ) e. _V |
31 |
|
simp1 |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> y e. NN ) |
32 |
|
relexpsucnnr |
|- ( ( ( R ^r J ) e. _V /\ y e. NN ) -> ( ( R ^r J ) ^r ( y + 1 ) ) = ( ( ( R ^r J ) ^r y ) o. ( R ^r J ) ) ) |
33 |
30 31 32
|
sylancr |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( ( R ^r J ) ^r ( y + 1 ) ) = ( ( ( R ^r J ) ^r y ) o. ( R ^r J ) ) ) |
34 |
|
simp3 |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) |
35 |
34
|
coeq1d |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( ( ( R ^r J ) ^r y ) o. ( R ^r J ) ) = ( ( R ^r ( J x. y ) ) o. ( R ^r J ) ) ) |
36 |
|
simp21 |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> J e. NN ) |
37 |
36 31
|
nnmulcld |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( J x. y ) e. NN ) |
38 |
|
simp22 |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> R e. V ) |
39 |
|
relexpaddnn |
|- ( ( ( J x. y ) e. NN /\ J e. NN /\ R e. V ) -> ( ( R ^r ( J x. y ) ) o. ( R ^r J ) ) = ( R ^r ( ( J x. y ) + J ) ) ) |
40 |
37 36 38 39
|
syl3anc |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( ( R ^r ( J x. y ) ) o. ( R ^r J ) ) = ( R ^r ( ( J x. y ) + J ) ) ) |
41 |
35 40
|
eqtrd |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( ( ( R ^r J ) ^r y ) o. ( R ^r J ) ) = ( R ^r ( ( J x. y ) + J ) ) ) |
42 |
36
|
nncnd |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> J e. CC ) |
43 |
31
|
nncnd |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> y e. CC ) |
44 |
|
1cnd |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> 1 e. CC ) |
45 |
42 43 44
|
adddid |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( J x. ( y + 1 ) ) = ( ( J x. y ) + ( J x. 1 ) ) ) |
46 |
42
|
mulid1d |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( J x. 1 ) = J ) |
47 |
46
|
oveq2d |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( ( J x. y ) + ( J x. 1 ) ) = ( ( J x. y ) + J ) ) |
48 |
45 47
|
eqtr2d |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( ( J x. y ) + J ) = ( J x. ( y + 1 ) ) ) |
49 |
48
|
oveq2d |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( R ^r ( ( J x. y ) + J ) ) = ( R ^r ( J x. ( y + 1 ) ) ) ) |
50 |
41 49
|
eqtrd |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( ( ( R ^r J ) ^r y ) o. ( R ^r J ) ) = ( R ^r ( J x. ( y + 1 ) ) ) ) |
51 |
33 50
|
eqtrd |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( ( R ^r J ) ^r ( y + 1 ) ) = ( R ^r ( J x. ( y + 1 ) ) ) ) |
52 |
51
|
3exp |
|- ( y e. NN -> ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) -> ( ( R ^r J ) ^r ( y + 1 ) ) = ( R ^r ( J x. ( y + 1 ) ) ) ) ) ) |
53 |
52
|
a2d |
|- ( y e. NN -> ( ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r ( y + 1 ) ) = ( R ^r ( J x. ( y + 1 ) ) ) ) ) ) |
54 |
5 10 15 20 29 53
|
nnind |
|- ( K e. NN -> ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r ( J x. K ) ) ) ) |
55 |
54
|
3expd |
|- ( K e. NN -> ( J e. NN -> ( R e. V -> ( I = ( J x. K ) -> ( ( R ^r J ) ^r K ) = ( R ^r ( J x. K ) ) ) ) ) ) |
56 |
55
|
impcom |
|- ( ( J e. NN /\ K e. NN ) -> ( R e. V -> ( I = ( J x. K ) -> ( ( R ^r J ) ^r K ) = ( R ^r ( J x. K ) ) ) ) ) |
57 |
56
|
impd |
|- ( ( J e. NN /\ K e. NN ) -> ( ( R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r ( J x. K ) ) ) ) |
58 |
57
|
impcom |
|- ( ( ( R e. V /\ I = ( J x. K ) ) /\ ( J e. NN /\ K e. NN ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r ( J x. K ) ) ) |
59 |
|
simplr |
|- ( ( ( R e. V /\ I = ( J x. K ) ) /\ ( J e. NN /\ K e. NN ) ) -> I = ( J x. K ) ) |
60 |
59
|
eqcomd |
|- ( ( ( R e. V /\ I = ( J x. K ) ) /\ ( J e. NN /\ K e. NN ) ) -> ( J x. K ) = I ) |
61 |
60
|
oveq2d |
|- ( ( ( R e. V /\ I = ( J x. K ) ) /\ ( J e. NN /\ K e. NN ) ) -> ( R ^r ( J x. K ) ) = ( R ^r I ) ) |
62 |
58 61
|
eqtrd |
|- ( ( ( R e. V /\ I = ( J x. K ) ) /\ ( J e. NN /\ K e. NN ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) |