| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( x = 1 -> ( ( R ^r J ) ^r x ) = ( ( R ^r J ) ^r 1 ) ) |
| 2 |
|
oveq2 |
|- ( x = 1 -> ( J x. x ) = ( J x. 1 ) ) |
| 3 |
2
|
oveq2d |
|- ( x = 1 -> ( R ^r ( J x. x ) ) = ( R ^r ( J x. 1 ) ) ) |
| 4 |
1 3
|
eqeq12d |
|- ( x = 1 -> ( ( ( R ^r J ) ^r x ) = ( R ^r ( J x. x ) ) <-> ( ( R ^r J ) ^r 1 ) = ( R ^r ( J x. 1 ) ) ) ) |
| 5 |
4
|
imbi2d |
|- ( x = 1 -> ( ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r x ) = ( R ^r ( J x. x ) ) ) <-> ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r 1 ) = ( R ^r ( J x. 1 ) ) ) ) ) |
| 6 |
|
oveq2 |
|- ( x = y -> ( ( R ^r J ) ^r x ) = ( ( R ^r J ) ^r y ) ) |
| 7 |
|
oveq2 |
|- ( x = y -> ( J x. x ) = ( J x. y ) ) |
| 8 |
7
|
oveq2d |
|- ( x = y -> ( R ^r ( J x. x ) ) = ( R ^r ( J x. y ) ) ) |
| 9 |
6 8
|
eqeq12d |
|- ( x = y -> ( ( ( R ^r J ) ^r x ) = ( R ^r ( J x. x ) ) <-> ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) ) |
| 10 |
9
|
imbi2d |
|- ( x = y -> ( ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r x ) = ( R ^r ( J x. x ) ) ) <-> ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) ) ) |
| 11 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( ( R ^r J ) ^r x ) = ( ( R ^r J ) ^r ( y + 1 ) ) ) |
| 12 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( J x. x ) = ( J x. ( y + 1 ) ) ) |
| 13 |
12
|
oveq2d |
|- ( x = ( y + 1 ) -> ( R ^r ( J x. x ) ) = ( R ^r ( J x. ( y + 1 ) ) ) ) |
| 14 |
11 13
|
eqeq12d |
|- ( x = ( y + 1 ) -> ( ( ( R ^r J ) ^r x ) = ( R ^r ( J x. x ) ) <-> ( ( R ^r J ) ^r ( y + 1 ) ) = ( R ^r ( J x. ( y + 1 ) ) ) ) ) |
| 15 |
14
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r x ) = ( R ^r ( J x. x ) ) ) <-> ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r ( y + 1 ) ) = ( R ^r ( J x. ( y + 1 ) ) ) ) ) ) |
| 16 |
|
oveq2 |
|- ( x = K -> ( ( R ^r J ) ^r x ) = ( ( R ^r J ) ^r K ) ) |
| 17 |
|
oveq2 |
|- ( x = K -> ( J x. x ) = ( J x. K ) ) |
| 18 |
17
|
oveq2d |
|- ( x = K -> ( R ^r ( J x. x ) ) = ( R ^r ( J x. K ) ) ) |
| 19 |
16 18
|
eqeq12d |
|- ( x = K -> ( ( ( R ^r J ) ^r x ) = ( R ^r ( J x. x ) ) <-> ( ( R ^r J ) ^r K ) = ( R ^r ( J x. K ) ) ) ) |
| 20 |
19
|
imbi2d |
|- ( x = K -> ( ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r x ) = ( R ^r ( J x. x ) ) ) <-> ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r ( J x. K ) ) ) ) ) |
| 21 |
|
ovexd |
|- ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( R ^r J ) e. _V ) |
| 22 |
21
|
relexp1d |
|- ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r 1 ) = ( R ^r J ) ) |
| 23 |
|
simp1 |
|- ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> J e. NN ) |
| 24 |
|
nnre |
|- ( J e. NN -> J e. RR ) |
| 25 |
|
ax-1rid |
|- ( J e. RR -> ( J x. 1 ) = J ) |
| 26 |
23 24 25
|
3syl |
|- ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( J x. 1 ) = J ) |
| 27 |
26
|
eqcomd |
|- ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> J = ( J x. 1 ) ) |
| 28 |
27
|
oveq2d |
|- ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( R ^r J ) = ( R ^r ( J x. 1 ) ) ) |
| 29 |
22 28
|
eqtrd |
|- ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r 1 ) = ( R ^r ( J x. 1 ) ) ) |
| 30 |
|
ovex |
|- ( R ^r J ) e. _V |
| 31 |
|
simp1 |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> y e. NN ) |
| 32 |
|
relexpsucnnr |
|- ( ( ( R ^r J ) e. _V /\ y e. NN ) -> ( ( R ^r J ) ^r ( y + 1 ) ) = ( ( ( R ^r J ) ^r y ) o. ( R ^r J ) ) ) |
| 33 |
30 31 32
|
sylancr |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( ( R ^r J ) ^r ( y + 1 ) ) = ( ( ( R ^r J ) ^r y ) o. ( R ^r J ) ) ) |
| 34 |
|
simp3 |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) |
| 35 |
34
|
coeq1d |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( ( ( R ^r J ) ^r y ) o. ( R ^r J ) ) = ( ( R ^r ( J x. y ) ) o. ( R ^r J ) ) ) |
| 36 |
|
simp21 |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> J e. NN ) |
| 37 |
36 31
|
nnmulcld |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( J x. y ) e. NN ) |
| 38 |
|
simp22 |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> R e. V ) |
| 39 |
|
relexpaddnn |
|- ( ( ( J x. y ) e. NN /\ J e. NN /\ R e. V ) -> ( ( R ^r ( J x. y ) ) o. ( R ^r J ) ) = ( R ^r ( ( J x. y ) + J ) ) ) |
| 40 |
37 36 38 39
|
syl3anc |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( ( R ^r ( J x. y ) ) o. ( R ^r J ) ) = ( R ^r ( ( J x. y ) + J ) ) ) |
| 41 |
35 40
|
eqtrd |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( ( ( R ^r J ) ^r y ) o. ( R ^r J ) ) = ( R ^r ( ( J x. y ) + J ) ) ) |
| 42 |
36
|
nncnd |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> J e. CC ) |
| 43 |
31
|
nncnd |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> y e. CC ) |
| 44 |
|
1cnd |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> 1 e. CC ) |
| 45 |
42 43 44
|
adddid |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( J x. ( y + 1 ) ) = ( ( J x. y ) + ( J x. 1 ) ) ) |
| 46 |
42
|
mulridd |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( J x. 1 ) = J ) |
| 47 |
46
|
oveq2d |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( ( J x. y ) + ( J x. 1 ) ) = ( ( J x. y ) + J ) ) |
| 48 |
45 47
|
eqtr2d |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( ( J x. y ) + J ) = ( J x. ( y + 1 ) ) ) |
| 49 |
48
|
oveq2d |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( R ^r ( ( J x. y ) + J ) ) = ( R ^r ( J x. ( y + 1 ) ) ) ) |
| 50 |
41 49
|
eqtrd |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( ( ( R ^r J ) ^r y ) o. ( R ^r J ) ) = ( R ^r ( J x. ( y + 1 ) ) ) ) |
| 51 |
33 50
|
eqtrd |
|- ( ( y e. NN /\ ( J e. NN /\ R e. V /\ I = ( J x. K ) ) /\ ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( ( R ^r J ) ^r ( y + 1 ) ) = ( R ^r ( J x. ( y + 1 ) ) ) ) |
| 52 |
51
|
3exp |
|- ( y e. NN -> ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) -> ( ( R ^r J ) ^r ( y + 1 ) ) = ( R ^r ( J x. ( y + 1 ) ) ) ) ) ) |
| 53 |
52
|
a2d |
|- ( y e. NN -> ( ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r y ) = ( R ^r ( J x. y ) ) ) -> ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r ( y + 1 ) ) = ( R ^r ( J x. ( y + 1 ) ) ) ) ) ) |
| 54 |
5 10 15 20 29 53
|
nnind |
|- ( K e. NN -> ( ( J e. NN /\ R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r ( J x. K ) ) ) ) |
| 55 |
54
|
3expd |
|- ( K e. NN -> ( J e. NN -> ( R e. V -> ( I = ( J x. K ) -> ( ( R ^r J ) ^r K ) = ( R ^r ( J x. K ) ) ) ) ) ) |
| 56 |
55
|
impcom |
|- ( ( J e. NN /\ K e. NN ) -> ( R e. V -> ( I = ( J x. K ) -> ( ( R ^r J ) ^r K ) = ( R ^r ( J x. K ) ) ) ) ) |
| 57 |
56
|
impd |
|- ( ( J e. NN /\ K e. NN ) -> ( ( R e. V /\ I = ( J x. K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r ( J x. K ) ) ) ) |
| 58 |
57
|
impcom |
|- ( ( ( R e. V /\ I = ( J x. K ) ) /\ ( J e. NN /\ K e. NN ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r ( J x. K ) ) ) |
| 59 |
|
simplr |
|- ( ( ( R e. V /\ I = ( J x. K ) ) /\ ( J e. NN /\ K e. NN ) ) -> I = ( J x. K ) ) |
| 60 |
59
|
eqcomd |
|- ( ( ( R e. V /\ I = ( J x. K ) ) /\ ( J e. NN /\ K e. NN ) ) -> ( J x. K ) = I ) |
| 61 |
60
|
oveq2d |
|- ( ( ( R e. V /\ I = ( J x. K ) ) /\ ( J e. NN /\ K e. NN ) ) -> ( R ^r ( J x. K ) ) = ( R ^r I ) ) |
| 62 |
58 61
|
eqtrd |
|- ( ( ( R e. V /\ I = ( J x. K ) ) /\ ( J e. NN /\ K e. NN ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) |