| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( n = 1 -> ( R ^r n ) = ( R ^r 1 ) ) |
| 2 |
1
|
coeq1d |
|- ( n = 1 -> ( ( R ^r n ) o. ( R ^r M ) ) = ( ( R ^r 1 ) o. ( R ^r M ) ) ) |
| 3 |
|
oveq1 |
|- ( n = 1 -> ( n + M ) = ( 1 + M ) ) |
| 4 |
3
|
oveq2d |
|- ( n = 1 -> ( R ^r ( n + M ) ) = ( R ^r ( 1 + M ) ) ) |
| 5 |
2 4
|
eqeq12d |
|- ( n = 1 -> ( ( ( R ^r n ) o. ( R ^r M ) ) = ( R ^r ( n + M ) ) <-> ( ( R ^r 1 ) o. ( R ^r M ) ) = ( R ^r ( 1 + M ) ) ) ) |
| 6 |
5
|
imbi2d |
|- ( n = 1 -> ( ( ( M e. NN /\ R e. V ) -> ( ( R ^r n ) o. ( R ^r M ) ) = ( R ^r ( n + M ) ) ) <-> ( ( M e. NN /\ R e. V ) -> ( ( R ^r 1 ) o. ( R ^r M ) ) = ( R ^r ( 1 + M ) ) ) ) ) |
| 7 |
|
oveq2 |
|- ( n = k -> ( R ^r n ) = ( R ^r k ) ) |
| 8 |
7
|
coeq1d |
|- ( n = k -> ( ( R ^r n ) o. ( R ^r M ) ) = ( ( R ^r k ) o. ( R ^r M ) ) ) |
| 9 |
|
oveq1 |
|- ( n = k -> ( n + M ) = ( k + M ) ) |
| 10 |
9
|
oveq2d |
|- ( n = k -> ( R ^r ( n + M ) ) = ( R ^r ( k + M ) ) ) |
| 11 |
8 10
|
eqeq12d |
|- ( n = k -> ( ( ( R ^r n ) o. ( R ^r M ) ) = ( R ^r ( n + M ) ) <-> ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) ) |
| 12 |
11
|
imbi2d |
|- ( n = k -> ( ( ( M e. NN /\ R e. V ) -> ( ( R ^r n ) o. ( R ^r M ) ) = ( R ^r ( n + M ) ) ) <-> ( ( M e. NN /\ R e. V ) -> ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) ) ) |
| 13 |
|
oveq2 |
|- ( n = ( k + 1 ) -> ( R ^r n ) = ( R ^r ( k + 1 ) ) ) |
| 14 |
13
|
coeq1d |
|- ( n = ( k + 1 ) -> ( ( R ^r n ) o. ( R ^r M ) ) = ( ( R ^r ( k + 1 ) ) o. ( R ^r M ) ) ) |
| 15 |
|
oveq1 |
|- ( n = ( k + 1 ) -> ( n + M ) = ( ( k + 1 ) + M ) ) |
| 16 |
15
|
oveq2d |
|- ( n = ( k + 1 ) -> ( R ^r ( n + M ) ) = ( R ^r ( ( k + 1 ) + M ) ) ) |
| 17 |
14 16
|
eqeq12d |
|- ( n = ( k + 1 ) -> ( ( ( R ^r n ) o. ( R ^r M ) ) = ( R ^r ( n + M ) ) <-> ( ( R ^r ( k + 1 ) ) o. ( R ^r M ) ) = ( R ^r ( ( k + 1 ) + M ) ) ) ) |
| 18 |
17
|
imbi2d |
|- ( n = ( k + 1 ) -> ( ( ( M e. NN /\ R e. V ) -> ( ( R ^r n ) o. ( R ^r M ) ) = ( R ^r ( n + M ) ) ) <-> ( ( M e. NN /\ R e. V ) -> ( ( R ^r ( k + 1 ) ) o. ( R ^r M ) ) = ( R ^r ( ( k + 1 ) + M ) ) ) ) ) |
| 19 |
|
oveq2 |
|- ( n = N -> ( R ^r n ) = ( R ^r N ) ) |
| 20 |
19
|
coeq1d |
|- ( n = N -> ( ( R ^r n ) o. ( R ^r M ) ) = ( ( R ^r N ) o. ( R ^r M ) ) ) |
| 21 |
|
oveq1 |
|- ( n = N -> ( n + M ) = ( N + M ) ) |
| 22 |
21
|
oveq2d |
|- ( n = N -> ( R ^r ( n + M ) ) = ( R ^r ( N + M ) ) ) |
| 23 |
20 22
|
eqeq12d |
|- ( n = N -> ( ( ( R ^r n ) o. ( R ^r M ) ) = ( R ^r ( n + M ) ) <-> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) ) |
| 24 |
23
|
imbi2d |
|- ( n = N -> ( ( ( M e. NN /\ R e. V ) -> ( ( R ^r n ) o. ( R ^r M ) ) = ( R ^r ( n + M ) ) ) <-> ( ( M e. NN /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) ) ) |
| 25 |
|
relexp1g |
|- ( R e. V -> ( R ^r 1 ) = R ) |
| 26 |
25
|
adantl |
|- ( ( M e. NN /\ R e. V ) -> ( R ^r 1 ) = R ) |
| 27 |
26
|
coeq1d |
|- ( ( M e. NN /\ R e. V ) -> ( ( R ^r 1 ) o. ( R ^r M ) ) = ( R o. ( R ^r M ) ) ) |
| 28 |
|
relexpsucnnl |
|- ( ( R e. V /\ M e. NN ) -> ( R ^r ( M + 1 ) ) = ( R o. ( R ^r M ) ) ) |
| 29 |
28
|
ancoms |
|- ( ( M e. NN /\ R e. V ) -> ( R ^r ( M + 1 ) ) = ( R o. ( R ^r M ) ) ) |
| 30 |
|
simpl |
|- ( ( M e. NN /\ R e. V ) -> M e. NN ) |
| 31 |
30
|
nncnd |
|- ( ( M e. NN /\ R e. V ) -> M e. CC ) |
| 32 |
|
1cnd |
|- ( ( M e. NN /\ R e. V ) -> 1 e. CC ) |
| 33 |
31 32
|
addcomd |
|- ( ( M e. NN /\ R e. V ) -> ( M + 1 ) = ( 1 + M ) ) |
| 34 |
33
|
oveq2d |
|- ( ( M e. NN /\ R e. V ) -> ( R ^r ( M + 1 ) ) = ( R ^r ( 1 + M ) ) ) |
| 35 |
27 29 34
|
3eqtr2d |
|- ( ( M e. NN /\ R e. V ) -> ( ( R ^r 1 ) o. ( R ^r M ) ) = ( R ^r ( 1 + M ) ) ) |
| 36 |
|
simp2r |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> R e. V ) |
| 37 |
|
simp1 |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> k e. NN ) |
| 38 |
|
relexpsucnnl |
|- ( ( R e. V /\ k e. NN ) -> ( R ^r ( k + 1 ) ) = ( R o. ( R ^r k ) ) ) |
| 39 |
36 37 38
|
syl2anc |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( R ^r ( k + 1 ) ) = ( R o. ( R ^r k ) ) ) |
| 40 |
39
|
coeq1d |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( ( R ^r ( k + 1 ) ) o. ( R ^r M ) ) = ( ( R o. ( R ^r k ) ) o. ( R ^r M ) ) ) |
| 41 |
|
coass |
|- ( ( R o. ( R ^r k ) ) o. ( R ^r M ) ) = ( R o. ( ( R ^r k ) o. ( R ^r M ) ) ) |
| 42 |
40 41
|
eqtrdi |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( ( R ^r ( k + 1 ) ) o. ( R ^r M ) ) = ( R o. ( ( R ^r k ) o. ( R ^r M ) ) ) ) |
| 43 |
|
simp3 |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) |
| 44 |
43
|
coeq2d |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( R o. ( ( R ^r k ) o. ( R ^r M ) ) ) = ( R o. ( R ^r ( k + M ) ) ) ) |
| 45 |
37
|
nncnd |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> k e. CC ) |
| 46 |
|
1cnd |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> 1 e. CC ) |
| 47 |
31
|
3ad2ant2 |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> M e. CC ) |
| 48 |
45 46 47
|
add32d |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( ( k + 1 ) + M ) = ( ( k + M ) + 1 ) ) |
| 49 |
48
|
oveq2d |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( R ^r ( ( k + 1 ) + M ) ) = ( R ^r ( ( k + M ) + 1 ) ) ) |
| 50 |
30
|
3ad2ant2 |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> M e. NN ) |
| 51 |
37 50
|
nnaddcld |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( k + M ) e. NN ) |
| 52 |
|
relexpsucnnl |
|- ( ( R e. V /\ ( k + M ) e. NN ) -> ( R ^r ( ( k + M ) + 1 ) ) = ( R o. ( R ^r ( k + M ) ) ) ) |
| 53 |
36 51 52
|
syl2anc |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( R ^r ( ( k + M ) + 1 ) ) = ( R o. ( R ^r ( k + M ) ) ) ) |
| 54 |
49 53
|
eqtr2d |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( R o. ( R ^r ( k + M ) ) ) = ( R ^r ( ( k + 1 ) + M ) ) ) |
| 55 |
42 44 54
|
3eqtrd |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( ( R ^r ( k + 1 ) ) o. ( R ^r M ) ) = ( R ^r ( ( k + 1 ) + M ) ) ) |
| 56 |
55
|
3exp |
|- ( k e. NN -> ( ( M e. NN /\ R e. V ) -> ( ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) -> ( ( R ^r ( k + 1 ) ) o. ( R ^r M ) ) = ( R ^r ( ( k + 1 ) + M ) ) ) ) ) |
| 57 |
56
|
a2d |
|- ( k e. NN -> ( ( ( M e. NN /\ R e. V ) -> ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( ( M e. NN /\ R e. V ) -> ( ( R ^r ( k + 1 ) ) o. ( R ^r M ) ) = ( R ^r ( ( k + 1 ) + M ) ) ) ) ) |
| 58 |
6 12 18 24 35 57
|
nnind |
|- ( N e. NN -> ( ( M e. NN /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) ) |
| 59 |
58
|
3impib |
|- ( ( N e. NN /\ M e. NN /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) |