Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( n = 1 -> ( R ^r n ) = ( R ^r 1 ) ) |
2 |
1
|
coeq1d |
|- ( n = 1 -> ( ( R ^r n ) o. ( R ^r M ) ) = ( ( R ^r 1 ) o. ( R ^r M ) ) ) |
3 |
|
oveq1 |
|- ( n = 1 -> ( n + M ) = ( 1 + M ) ) |
4 |
3
|
oveq2d |
|- ( n = 1 -> ( R ^r ( n + M ) ) = ( R ^r ( 1 + M ) ) ) |
5 |
2 4
|
eqeq12d |
|- ( n = 1 -> ( ( ( R ^r n ) o. ( R ^r M ) ) = ( R ^r ( n + M ) ) <-> ( ( R ^r 1 ) o. ( R ^r M ) ) = ( R ^r ( 1 + M ) ) ) ) |
6 |
5
|
imbi2d |
|- ( n = 1 -> ( ( ( M e. NN /\ R e. V ) -> ( ( R ^r n ) o. ( R ^r M ) ) = ( R ^r ( n + M ) ) ) <-> ( ( M e. NN /\ R e. V ) -> ( ( R ^r 1 ) o. ( R ^r M ) ) = ( R ^r ( 1 + M ) ) ) ) ) |
7 |
|
oveq2 |
|- ( n = k -> ( R ^r n ) = ( R ^r k ) ) |
8 |
7
|
coeq1d |
|- ( n = k -> ( ( R ^r n ) o. ( R ^r M ) ) = ( ( R ^r k ) o. ( R ^r M ) ) ) |
9 |
|
oveq1 |
|- ( n = k -> ( n + M ) = ( k + M ) ) |
10 |
9
|
oveq2d |
|- ( n = k -> ( R ^r ( n + M ) ) = ( R ^r ( k + M ) ) ) |
11 |
8 10
|
eqeq12d |
|- ( n = k -> ( ( ( R ^r n ) o. ( R ^r M ) ) = ( R ^r ( n + M ) ) <-> ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) ) |
12 |
11
|
imbi2d |
|- ( n = k -> ( ( ( M e. NN /\ R e. V ) -> ( ( R ^r n ) o. ( R ^r M ) ) = ( R ^r ( n + M ) ) ) <-> ( ( M e. NN /\ R e. V ) -> ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) ) ) |
13 |
|
oveq2 |
|- ( n = ( k + 1 ) -> ( R ^r n ) = ( R ^r ( k + 1 ) ) ) |
14 |
13
|
coeq1d |
|- ( n = ( k + 1 ) -> ( ( R ^r n ) o. ( R ^r M ) ) = ( ( R ^r ( k + 1 ) ) o. ( R ^r M ) ) ) |
15 |
|
oveq1 |
|- ( n = ( k + 1 ) -> ( n + M ) = ( ( k + 1 ) + M ) ) |
16 |
15
|
oveq2d |
|- ( n = ( k + 1 ) -> ( R ^r ( n + M ) ) = ( R ^r ( ( k + 1 ) + M ) ) ) |
17 |
14 16
|
eqeq12d |
|- ( n = ( k + 1 ) -> ( ( ( R ^r n ) o. ( R ^r M ) ) = ( R ^r ( n + M ) ) <-> ( ( R ^r ( k + 1 ) ) o. ( R ^r M ) ) = ( R ^r ( ( k + 1 ) + M ) ) ) ) |
18 |
17
|
imbi2d |
|- ( n = ( k + 1 ) -> ( ( ( M e. NN /\ R e. V ) -> ( ( R ^r n ) o. ( R ^r M ) ) = ( R ^r ( n + M ) ) ) <-> ( ( M e. NN /\ R e. V ) -> ( ( R ^r ( k + 1 ) ) o. ( R ^r M ) ) = ( R ^r ( ( k + 1 ) + M ) ) ) ) ) |
19 |
|
oveq2 |
|- ( n = N -> ( R ^r n ) = ( R ^r N ) ) |
20 |
19
|
coeq1d |
|- ( n = N -> ( ( R ^r n ) o. ( R ^r M ) ) = ( ( R ^r N ) o. ( R ^r M ) ) ) |
21 |
|
oveq1 |
|- ( n = N -> ( n + M ) = ( N + M ) ) |
22 |
21
|
oveq2d |
|- ( n = N -> ( R ^r ( n + M ) ) = ( R ^r ( N + M ) ) ) |
23 |
20 22
|
eqeq12d |
|- ( n = N -> ( ( ( R ^r n ) o. ( R ^r M ) ) = ( R ^r ( n + M ) ) <-> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) ) |
24 |
23
|
imbi2d |
|- ( n = N -> ( ( ( M e. NN /\ R e. V ) -> ( ( R ^r n ) o. ( R ^r M ) ) = ( R ^r ( n + M ) ) ) <-> ( ( M e. NN /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) ) ) |
25 |
|
relexp1g |
|- ( R e. V -> ( R ^r 1 ) = R ) |
26 |
25
|
adantl |
|- ( ( M e. NN /\ R e. V ) -> ( R ^r 1 ) = R ) |
27 |
26
|
coeq1d |
|- ( ( M e. NN /\ R e. V ) -> ( ( R ^r 1 ) o. ( R ^r M ) ) = ( R o. ( R ^r M ) ) ) |
28 |
|
relexpsucnnl |
|- ( ( R e. V /\ M e. NN ) -> ( R ^r ( M + 1 ) ) = ( R o. ( R ^r M ) ) ) |
29 |
28
|
ancoms |
|- ( ( M e. NN /\ R e. V ) -> ( R ^r ( M + 1 ) ) = ( R o. ( R ^r M ) ) ) |
30 |
|
simpl |
|- ( ( M e. NN /\ R e. V ) -> M e. NN ) |
31 |
30
|
nncnd |
|- ( ( M e. NN /\ R e. V ) -> M e. CC ) |
32 |
|
1cnd |
|- ( ( M e. NN /\ R e. V ) -> 1 e. CC ) |
33 |
31 32
|
addcomd |
|- ( ( M e. NN /\ R e. V ) -> ( M + 1 ) = ( 1 + M ) ) |
34 |
33
|
oveq2d |
|- ( ( M e. NN /\ R e. V ) -> ( R ^r ( M + 1 ) ) = ( R ^r ( 1 + M ) ) ) |
35 |
27 29 34
|
3eqtr2d |
|- ( ( M e. NN /\ R e. V ) -> ( ( R ^r 1 ) o. ( R ^r M ) ) = ( R ^r ( 1 + M ) ) ) |
36 |
|
simp2r |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> R e. V ) |
37 |
|
simp1 |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> k e. NN ) |
38 |
|
relexpsucnnl |
|- ( ( R e. V /\ k e. NN ) -> ( R ^r ( k + 1 ) ) = ( R o. ( R ^r k ) ) ) |
39 |
36 37 38
|
syl2anc |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( R ^r ( k + 1 ) ) = ( R o. ( R ^r k ) ) ) |
40 |
39
|
coeq1d |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( ( R ^r ( k + 1 ) ) o. ( R ^r M ) ) = ( ( R o. ( R ^r k ) ) o. ( R ^r M ) ) ) |
41 |
|
coass |
|- ( ( R o. ( R ^r k ) ) o. ( R ^r M ) ) = ( R o. ( ( R ^r k ) o. ( R ^r M ) ) ) |
42 |
40 41
|
eqtrdi |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( ( R ^r ( k + 1 ) ) o. ( R ^r M ) ) = ( R o. ( ( R ^r k ) o. ( R ^r M ) ) ) ) |
43 |
|
simp3 |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) |
44 |
43
|
coeq2d |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( R o. ( ( R ^r k ) o. ( R ^r M ) ) ) = ( R o. ( R ^r ( k + M ) ) ) ) |
45 |
37
|
nncnd |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> k e. CC ) |
46 |
|
1cnd |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> 1 e. CC ) |
47 |
31
|
3ad2ant2 |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> M e. CC ) |
48 |
45 46 47
|
add32d |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( ( k + 1 ) + M ) = ( ( k + M ) + 1 ) ) |
49 |
48
|
oveq2d |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( R ^r ( ( k + 1 ) + M ) ) = ( R ^r ( ( k + M ) + 1 ) ) ) |
50 |
30
|
3ad2ant2 |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> M e. NN ) |
51 |
37 50
|
nnaddcld |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( k + M ) e. NN ) |
52 |
|
relexpsucnnl |
|- ( ( R e. V /\ ( k + M ) e. NN ) -> ( R ^r ( ( k + M ) + 1 ) ) = ( R o. ( R ^r ( k + M ) ) ) ) |
53 |
36 51 52
|
syl2anc |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( R ^r ( ( k + M ) + 1 ) ) = ( R o. ( R ^r ( k + M ) ) ) ) |
54 |
49 53
|
eqtr2d |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( R o. ( R ^r ( k + M ) ) ) = ( R ^r ( ( k + 1 ) + M ) ) ) |
55 |
42 44 54
|
3eqtrd |
|- ( ( k e. NN /\ ( M e. NN /\ R e. V ) /\ ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( ( R ^r ( k + 1 ) ) o. ( R ^r M ) ) = ( R ^r ( ( k + 1 ) + M ) ) ) |
56 |
55
|
3exp |
|- ( k e. NN -> ( ( M e. NN /\ R e. V ) -> ( ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) -> ( ( R ^r ( k + 1 ) ) o. ( R ^r M ) ) = ( R ^r ( ( k + 1 ) + M ) ) ) ) ) |
57 |
56
|
a2d |
|- ( k e. NN -> ( ( ( M e. NN /\ R e. V ) -> ( ( R ^r k ) o. ( R ^r M ) ) = ( R ^r ( k + M ) ) ) -> ( ( M e. NN /\ R e. V ) -> ( ( R ^r ( k + 1 ) ) o. ( R ^r M ) ) = ( R ^r ( ( k + 1 ) + M ) ) ) ) ) |
58 |
6 12 18 24 35 57
|
nnind |
|- ( N e. NN -> ( ( M e. NN /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) ) |
59 |
58
|
3impib |
|- ( ( N e. NN /\ M e. NN /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) |