| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
coeq1d |
|
| 3 |
|
oveq1 |
|
| 4 |
3
|
oveq2d |
|
| 5 |
2 4
|
eqeq12d |
|
| 6 |
5
|
imbi2d |
|
| 7 |
|
oveq2 |
|
| 8 |
7
|
coeq1d |
|
| 9 |
|
oveq1 |
|
| 10 |
9
|
oveq2d |
|
| 11 |
8 10
|
eqeq12d |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
coeq1d |
|
| 15 |
|
oveq1 |
|
| 16 |
15
|
oveq2d |
|
| 17 |
14 16
|
eqeq12d |
|
| 18 |
17
|
imbi2d |
|
| 19 |
|
oveq2 |
|
| 20 |
19
|
coeq1d |
|
| 21 |
|
oveq1 |
|
| 22 |
21
|
oveq2d |
|
| 23 |
20 22
|
eqeq12d |
|
| 24 |
23
|
imbi2d |
|
| 25 |
|
relexp1g |
|
| 26 |
25
|
adantl |
|
| 27 |
26
|
coeq1d |
|
| 28 |
|
relexpsucnnl |
|
| 29 |
28
|
ancoms |
|
| 30 |
|
simpl |
|
| 31 |
30
|
nncnd |
|
| 32 |
|
1cnd |
|
| 33 |
31 32
|
addcomd |
|
| 34 |
33
|
oveq2d |
|
| 35 |
27 29 34
|
3eqtr2d |
|
| 36 |
|
simp2r |
|
| 37 |
|
simp1 |
|
| 38 |
|
relexpsucnnl |
|
| 39 |
36 37 38
|
syl2anc |
|
| 40 |
39
|
coeq1d |
|
| 41 |
|
coass |
|
| 42 |
40 41
|
eqtrdi |
|
| 43 |
|
simp3 |
|
| 44 |
43
|
coeq2d |
|
| 45 |
37
|
nncnd |
|
| 46 |
|
1cnd |
|
| 47 |
31
|
3ad2ant2 |
|
| 48 |
45 46 47
|
add32d |
|
| 49 |
48
|
oveq2d |
|
| 50 |
30
|
3ad2ant2 |
|
| 51 |
37 50
|
nnaddcld |
|
| 52 |
|
relexpsucnnl |
|
| 53 |
36 51 52
|
syl2anc |
|
| 54 |
49 53
|
eqtr2d |
|
| 55 |
42 44 54
|
3eqtrd |
|
| 56 |
55
|
3exp |
|
| 57 |
56
|
a2d |
|
| 58 |
6 12 18 24 35 57
|
nnind |
|
| 59 |
58
|
3impib |
|