Metamath Proof Explorer


Theorem relexpsucnnl

Description: A reduction for relation exponentiation to the left. (Contributed by RP, 23-May-2020)

Ref Expression
Assertion relexpsucnnl R V N R r N + 1 = R R r N

Proof

Step Hyp Ref Expression
1 oveq1 n = 1 n + 1 = 1 + 1
2 1 oveq2d n = 1 R r n + 1 = R r 1 + 1
3 oveq2 n = 1 R r n = R r 1
4 3 coeq2d n = 1 R R r n = R R r 1
5 2 4 eqeq12d n = 1 R r n + 1 = R R r n R r 1 + 1 = R R r 1
6 5 imbi2d n = 1 R V R r n + 1 = R R r n R V R r 1 + 1 = R R r 1
7 oveq1 n = m n + 1 = m + 1
8 7 oveq2d n = m R r n + 1 = R r m + 1
9 oveq2 n = m R r n = R r m
10 9 coeq2d n = m R R r n = R R r m
11 8 10 eqeq12d n = m R r n + 1 = R R r n R r m + 1 = R R r m
12 11 imbi2d n = m R V R r n + 1 = R R r n R V R r m + 1 = R R r m
13 oveq1 n = m + 1 n + 1 = m + 1 + 1
14 13 oveq2d n = m + 1 R r n + 1 = R r m + 1 + 1
15 oveq2 n = m + 1 R r n = R r m + 1
16 15 coeq2d n = m + 1 R R r n = R R r m + 1
17 14 16 eqeq12d n = m + 1 R r n + 1 = R R r n R r m + 1 + 1 = R R r m + 1
18 17 imbi2d n = m + 1 R V R r n + 1 = R R r n R V R r m + 1 + 1 = R R r m + 1
19 oveq1 n = N n + 1 = N + 1
20 19 oveq2d n = N R r n + 1 = R r N + 1
21 oveq2 n = N R r n = R r N
22 21 coeq2d n = N R R r n = R R r N
23 20 22 eqeq12d n = N R r n + 1 = R R r n R r N + 1 = R R r N
24 23 imbi2d n = N R V R r n + 1 = R R r n R V R r N + 1 = R R r N
25 relexp1g R V R r 1 = R
26 25 coeq1d R V R r 1 R = R R
27 1nn 1
28 relexpsucnnr R V 1 R r 1 + 1 = R r 1 R
29 27 28 mpan2 R V R r 1 + 1 = R r 1 R
30 25 coeq2d R V R R r 1 = R R
31 26 29 30 3eqtr4d R V R r 1 + 1 = R R r 1
32 coeq1 R r m + 1 = R R r m R r m + 1 R = R R r m R
33 coass R R r m R = R R r m R
34 32 33 eqtrdi R r m + 1 = R R r m R r m + 1 R = R R r m R
35 34 adantl R V m R r m + 1 = R R r m R r m + 1 R = R R r m R
36 simpl R V m R r m + 1 = R R r m R V m
37 peano2nn m m + 1
38 37 anim2i R V m R V m + 1
39 relexpsucnnr R V m + 1 R r m + 1 + 1 = R r m + 1 R
40 36 38 39 3syl R V m R r m + 1 = R R r m R r m + 1 + 1 = R r m + 1 R
41 relexpsucnnr R V m R r m + 1 = R r m R
42 41 adantr R V m R r m + 1 = R R r m R r m + 1 = R r m R
43 42 coeq2d R V m R r m + 1 = R R r m R R r m + 1 = R R r m R
44 35 40 43 3eqtr4d R V m R r m + 1 = R R r m R r m + 1 + 1 = R R r m + 1
45 44 ex R V m R r m + 1 = R R r m R r m + 1 + 1 = R R r m + 1
46 45 expcom m R V R r m + 1 = R R r m R r m + 1 + 1 = R R r m + 1
47 46 a2d m R V R r m + 1 = R R r m R V R r m + 1 + 1 = R R r m + 1
48 6 12 18 24 31 47 nnind N R V R r N + 1 = R R r N
49 48 impcom R V N R r N + 1 = R R r N