Database
REAL AND COMPLEX NUMBERS
Reflexive and transitive closures of relations
Exponentiation of relations
relexpsucnnr
Next ⟩
relexp1g
Metamath Proof Explorer
Ascii
Unicode
Theorem
relexpsucnnr
Description:
A reduction for relation exponentiation to the right.
(Contributed by
RP
, 22-May-2020)
Ref
Expression
Assertion
relexpsucnnr
⊢
R
∈
V
∧
N
∈
ℕ
→
R
↑
r
N
+
1
=
R
↑
r
N
∘
R
Proof
Step
Hyp
Ref
Expression
1
eqidd
⊢
R
∈
V
∧
N
∈
ℕ
→
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
=
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
2
simprr
⊢
R
∈
V
∧
N
∈
ℕ
∧
r
=
R
∧
n
=
N
+
1
→
n
=
N
+
1
3
dmeq
⊢
r
=
R
→
dom
r
=
dom
R
4
rneq
⊢
r
=
R
→
ran
r
=
ran
R
5
3
4
uneq12d
⊢
r
=
R
→
dom
r
∪
ran
r
=
dom
R
∪
ran
R
6
5
reseq2d
⊢
r
=
R
→
I
↾
dom
r
∪
ran
r
=
I
↾
dom
R
∪
ran
R
7
eqidd
⊢
r
=
R
→
1
=
1
8
coeq2
⊢
r
=
R
→
x
∘
r
=
x
∘
R
9
8
mpoeq3dv
⊢
r
=
R
→
x
∈
V
,
y
∈
V
⟼
x
∘
r
=
x
∈
V
,
y
∈
V
⟼
x
∘
R
10
id
⊢
r
=
R
→
r
=
R
11
10
mpteq2dv
⊢
r
=
R
→
z
∈
V
⟼
r
=
z
∈
V
⟼
R
12
7
9
11
seqeq123d
⊢
r
=
R
→
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
=
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
13
12
fveq1d
⊢
r
=
R
→
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
N
+
1
=
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
+
1
14
6
13
ifeq12d
⊢
r
=
R
→
if
N
+
1
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
N
+
1
=
if
N
+
1
=
0
I
↾
dom
R
∪
ran
R
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
+
1
15
14
ad2antrl
⊢
R
∈
V
∧
N
∈
ℕ
∧
r
=
R
∧
N
+
1
=
N
+
1
→
if
N
+
1
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
N
+
1
=
if
N
+
1
=
0
I
↾
dom
R
∪
ran
R
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
+
1
16
15
a1i
⊢
n
=
N
+
1
→
R
∈
V
∧
N
∈
ℕ
∧
r
=
R
∧
N
+
1
=
N
+
1
→
if
N
+
1
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
N
+
1
=
if
N
+
1
=
0
I
↾
dom
R
∪
ran
R
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
+
1
17
eqeq1
⊢
n
=
N
+
1
→
n
=
N
+
1
↔
N
+
1
=
N
+
1
18
17
anbi2d
⊢
n
=
N
+
1
→
r
=
R
∧
n
=
N
+
1
↔
r
=
R
∧
N
+
1
=
N
+
1
19
18
anbi2d
⊢
n
=
N
+
1
→
R
∈
V
∧
N
∈
ℕ
∧
r
=
R
∧
n
=
N
+
1
↔
R
∈
V
∧
N
∈
ℕ
∧
r
=
R
∧
N
+
1
=
N
+
1
20
eqeq1
⊢
n
=
N
+
1
→
n
=
0
↔
N
+
1
=
0
21
fveq2
⊢
n
=
N
+
1
→
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
=
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
N
+
1
22
20
21
ifbieq2d
⊢
n
=
N
+
1
→
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
=
if
N
+
1
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
N
+
1
23
22
eqeq1d
⊢
n
=
N
+
1
→
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
=
if
N
+
1
=
0
I
↾
dom
R
∪
ran
R
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
+
1
↔
if
N
+
1
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
N
+
1
=
if
N
+
1
=
0
I
↾
dom
R
∪
ran
R
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
+
1
24
16
19
23
3imtr4d
⊢
n
=
N
+
1
→
R
∈
V
∧
N
∈
ℕ
∧
r
=
R
∧
n
=
N
+
1
→
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
=
if
N
+
1
=
0
I
↾
dom
R
∪
ran
R
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
+
1
25
2
24
mpcom
⊢
R
∈
V
∧
N
∈
ℕ
∧
r
=
R
∧
n
=
N
+
1
→
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
=
if
N
+
1
=
0
I
↾
dom
R
∪
ran
R
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
+
1
26
elex
⊢
R
∈
V
→
R
∈
V
27
26
adantr
⊢
R
∈
V
∧
N
∈
ℕ
→
R
∈
V
28
simpr
⊢
R
∈
V
∧
N
∈
ℕ
→
N
∈
ℕ
29
28
peano2nnd
⊢
R
∈
V
∧
N
∈
ℕ
→
N
+
1
∈
ℕ
30
29
nnnn0d
⊢
R
∈
V
∧
N
∈
ℕ
→
N
+
1
∈
ℕ
0
31
dmexg
⊢
R
∈
V
→
dom
R
∈
V
32
rnexg
⊢
R
∈
V
→
ran
R
∈
V
33
unexg
⊢
dom
R
∈
V
∧
ran
R
∈
V
→
dom
R
∪
ran
R
∈
V
34
31
32
33
syl2anc
⊢
R
∈
V
→
dom
R
∪
ran
R
∈
V
35
resiexg
⊢
dom
R
∪
ran
R
∈
V
→
I
↾
dom
R
∪
ran
R
∈
V
36
34
35
syl
⊢
R
∈
V
→
I
↾
dom
R
∪
ran
R
∈
V
37
36
adantr
⊢
R
∈
V
∧
N
∈
ℕ
→
I
↾
dom
R
∪
ran
R
∈
V
38
fvexd
⊢
R
∈
V
∧
N
∈
ℕ
→
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
+
1
∈
V
39
37
38
ifcld
⊢
R
∈
V
∧
N
∈
ℕ
→
if
N
+
1
=
0
I
↾
dom
R
∪
ran
R
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
+
1
∈
V
40
1
25
27
30
39
ovmpod
⊢
R
∈
V
∧
N
∈
ℕ
→
R
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
N
+
1
=
if
N
+
1
=
0
I
↾
dom
R
∪
ran
R
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
+
1
41
nnne0
⊢
N
+
1
∈
ℕ
→
N
+
1
≠
0
42
41
neneqd
⊢
N
+
1
∈
ℕ
→
¬
N
+
1
=
0
43
29
42
syl
⊢
R
∈
V
∧
N
∈
ℕ
→
¬
N
+
1
=
0
44
43
iffalsed
⊢
R
∈
V
∧
N
∈
ℕ
→
if
N
+
1
=
0
I
↾
dom
R
∪
ran
R
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
+
1
=
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
+
1
45
elnnuz
⊢
N
∈
ℕ
↔
N
∈
ℤ
≥
1
46
45
biimpi
⊢
N
∈
ℕ
→
N
∈
ℤ
≥
1
47
46
adantl
⊢
R
∈
V
∧
N
∈
ℕ
→
N
∈
ℤ
≥
1
48
seqp1
⊢
N
∈
ℤ
≥
1
→
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
+
1
=
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
+
1
49
47
48
syl
⊢
R
∈
V
∧
N
∈
ℕ
→
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
+
1
=
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
+
1
50
ovex
⊢
N
+
1
∈
V
51
simpl
⊢
R
∈
V
∧
N
∈
ℕ
→
R
∈
V
52
eqidd
⊢
z
=
N
+
1
→
R
=
R
53
eqid
⊢
z
∈
V
⟼
R
=
z
∈
V
⟼
R
54
52
53
fvmptg
⊢
N
+
1
∈
V
∧
R
∈
V
→
z
∈
V
⟼
R
N
+
1
=
R
55
50
51
54
sylancr
⊢
R
∈
V
∧
N
∈
ℕ
→
z
∈
V
⟼
R
N
+
1
=
R
56
55
oveq2d
⊢
R
∈
V
∧
N
∈
ℕ
→
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
+
1
=
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
x
∈
V
,
y
∈
V
⟼
x
∘
R
R
57
nfcv
⊢
Ⅎ
_
a
x
∘
R
58
nfcv
⊢
Ⅎ
_
b
x
∘
R
59
nfcv
⊢
Ⅎ
_
x
a
∘
R
60
nfcv
⊢
Ⅎ
_
y
a
∘
R
61
simpl
⊢
x
=
a
∧
y
=
b
→
x
=
a
62
61
coeq1d
⊢
x
=
a
∧
y
=
b
→
x
∘
R
=
a
∘
R
63
57
58
59
60
62
cbvmpo
⊢
x
∈
V
,
y
∈
V
⟼
x
∘
R
=
a
∈
V
,
b
∈
V
⟼
a
∘
R
64
oveq
⊢
x
∈
V
,
y
∈
V
⟼
x
∘
R
=
a
∈
V
,
b
∈
V
⟼
a
∘
R
→
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
x
∈
V
,
y
∈
V
⟼
x
∘
R
R
=
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
a
∈
V
,
b
∈
V
⟼
a
∘
R
R
65
63
64
mp1i
⊢
R
∈
V
∧
N
∈
ℕ
→
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
x
∈
V
,
y
∈
V
⟼
x
∘
R
R
=
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
a
∈
V
,
b
∈
V
⟼
a
∘
R
R
66
eqidd
⊢
R
∈
V
∧
N
∈
ℕ
→
a
∈
V
,
b
∈
V
⟼
a
∘
R
=
a
∈
V
,
b
∈
V
⟼
a
∘
R
67
simprl
⊢
R
∈
V
∧
N
∈
ℕ
∧
a
=
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
∧
b
=
R
→
a
=
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
68
67
coeq1d
⊢
R
∈
V
∧
N
∈
ℕ
∧
a
=
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
∧
b
=
R
→
a
∘
R
=
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
∘
R
69
fvexd
⊢
R
∈
V
∧
N
∈
ℕ
→
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
∈
V
70
fvex
⊢
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
∈
V
71
coexg
⊢
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
∈
V
∧
R
∈
V
→
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
∘
R
∈
V
72
70
51
71
sylancr
⊢
R
∈
V
∧
N
∈
ℕ
→
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
∘
R
∈
V
73
66
68
69
27
72
ovmpod
⊢
R
∈
V
∧
N
∈
ℕ
→
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
a
∈
V
,
b
∈
V
⟼
a
∘
R
R
=
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
∘
R
74
simpr
⊢
r
=
R
∧
n
=
N
→
n
=
N
75
74
eqeq1d
⊢
r
=
R
∧
n
=
N
→
n
=
0
↔
N
=
0
76
6
adantr
⊢
r
=
R
∧
n
=
N
→
I
↾
dom
r
∪
ran
r
=
I
↾
dom
R
∪
ran
R
77
12
adantr
⊢
r
=
R
∧
n
=
N
→
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
=
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
78
77
74
fveq12d
⊢
r
=
R
∧
n
=
N
→
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
=
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
79
75
76
78
ifbieq12d
⊢
r
=
R
∧
n
=
N
→
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
=
if
N
=
0
I
↾
dom
R
∪
ran
R
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
80
79
adantl
⊢
R
∈
V
∧
N
∈
ℕ
∧
r
=
R
∧
n
=
N
→
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
=
if
N
=
0
I
↾
dom
R
∪
ran
R
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
81
28
nnnn0d
⊢
R
∈
V
∧
N
∈
ℕ
→
N
∈
ℕ
0
82
37
69
ifcld
⊢
R
∈
V
∧
N
∈
ℕ
→
if
N
=
0
I
↾
dom
R
∪
ran
R
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
∈
V
83
1
80
27
81
82
ovmpod
⊢
R
∈
V
∧
N
∈
ℕ
→
R
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
N
=
if
N
=
0
I
↾
dom
R
∪
ran
R
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
84
nnne0
⊢
N
∈
ℕ
→
N
≠
0
85
84
adantl
⊢
R
∈
V
∧
N
∈
ℕ
→
N
≠
0
86
85
neneqd
⊢
R
∈
V
∧
N
∈
ℕ
→
¬
N
=
0
87
86
iffalsed
⊢
R
∈
V
∧
N
∈
ℕ
→
if
N
=
0
I
↾
dom
R
∪
ran
R
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
=
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
88
83
87
eqtr2d
⊢
R
∈
V
∧
N
∈
ℕ
→
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
=
R
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
N
89
88
coeq1d
⊢
R
∈
V
∧
N
∈
ℕ
→
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
∘
R
=
R
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
N
∘
R
90
65
73
89
3eqtrd
⊢
R
∈
V
∧
N
∈
ℕ
→
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
x
∈
V
,
y
∈
V
⟼
x
∘
R
R
=
R
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
N
∘
R
91
49
56
90
3eqtrd
⊢
R
∈
V
∧
N
∈
ℕ
→
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
R
z
∈
V
⟼
R
N
+
1
=
R
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
N
∘
R
92
40
44
91
3eqtrd
⊢
R
∈
V
∧
N
∈
ℕ
→
R
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
N
+
1
=
R
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
N
∘
R
93
df-relexp
⊢
↑
r
=
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
94
oveq
⊢
↑
r
=
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
→
R
↑
r
N
+
1
=
R
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
N
+
1
95
oveq
⊢
↑
r
=
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
→
R
↑
r
N
=
R
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
N
96
95
coeq1d
⊢
↑
r
=
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
→
R
↑
r
N
∘
R
=
R
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
N
∘
R
97
94
96
eqeq12d
⊢
↑
r
=
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
→
R
↑
r
N
+
1
=
R
↑
r
N
∘
R
↔
R
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
N
+
1
=
R
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
N
∘
R
98
97
imbi2d
⊢
↑
r
=
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
→
R
∈
V
∧
N
∈
ℕ
→
R
↑
r
N
+
1
=
R
↑
r
N
∘
R
↔
R
∈
V
∧
N
∈
ℕ
→
R
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
N
+
1
=
R
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
N
∘
R
99
93
98
ax-mp
⊢
R
∈
V
∧
N
∈
ℕ
→
R
↑
r
N
+
1
=
R
↑
r
N
∘
R
↔
R
∈
V
∧
N
∈
ℕ
→
R
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
N
+
1
=
R
r
∈
V
,
n
∈
ℕ
0
⟼
if
n
=
0
I
↾
dom
r
∪
ran
r
seq
1
x
∈
V
,
y
∈
V
⟼
x
∘
r
z
∈
V
⟼
r
n
N
∘
R
100
92
99
mpbir
⊢
R
∈
V
∧
N
∈
ℕ
→
R
↑
r
N
+
1
=
R
↑
r
N
∘
R