Metamath Proof Explorer


Theorem relexpsucnnr

Description: A reduction for relation exponentiation to the right. (Contributed by RP, 22-May-2020)

Ref Expression
Assertion relexpsucnnr RVNRrN+1=RrNR

Proof

Step Hyp Ref Expression
1 eqidd RVNrV,n0ifn=0Idomrranrseq1xV,yVxrzVrn=rV,n0ifn=0Idomrranrseq1xV,yVxrzVrn
2 simprr RVNr=Rn=N+1n=N+1
3 dmeq r=Rdomr=domR
4 rneq r=Rranr=ranR
5 3 4 uneq12d r=Rdomrranr=domRranR
6 5 reseq2d r=RIdomrranr=IdomRranR
7 eqidd r=R1=1
8 coeq2 r=Rxr=xR
9 8 mpoeq3dv r=RxV,yVxr=xV,yVxR
10 id r=Rr=R
11 10 mpteq2dv r=RzVr=zVR
12 7 9 11 seqeq123d r=Rseq1xV,yVxrzVr=seq1xV,yVxRzVR
13 12 fveq1d r=Rseq1xV,yVxrzVrN+1=seq1xV,yVxRzVRN+1
14 6 13 ifeq12d r=RifN+1=0Idomrranrseq1xV,yVxrzVrN+1=ifN+1=0IdomRranRseq1xV,yVxRzVRN+1
15 14 ad2antrl RVNr=RN+1=N+1ifN+1=0Idomrranrseq1xV,yVxrzVrN+1=ifN+1=0IdomRranRseq1xV,yVxRzVRN+1
16 15 a1i n=N+1RVNr=RN+1=N+1ifN+1=0Idomrranrseq1xV,yVxrzVrN+1=ifN+1=0IdomRranRseq1xV,yVxRzVRN+1
17 eqeq1 n=N+1n=N+1N+1=N+1
18 17 anbi2d n=N+1r=Rn=N+1r=RN+1=N+1
19 18 anbi2d n=N+1RVNr=Rn=N+1RVNr=RN+1=N+1
20 eqeq1 n=N+1n=0N+1=0
21 fveq2 n=N+1seq1xV,yVxrzVrn=seq1xV,yVxrzVrN+1
22 20 21 ifbieq2d n=N+1ifn=0Idomrranrseq1xV,yVxrzVrn=ifN+1=0Idomrranrseq1xV,yVxrzVrN+1
23 22 eqeq1d n=N+1ifn=0Idomrranrseq1xV,yVxrzVrn=ifN+1=0IdomRranRseq1xV,yVxRzVRN+1ifN+1=0Idomrranrseq1xV,yVxrzVrN+1=ifN+1=0IdomRranRseq1xV,yVxRzVRN+1
24 16 19 23 3imtr4d n=N+1RVNr=Rn=N+1ifn=0Idomrranrseq1xV,yVxrzVrn=ifN+1=0IdomRranRseq1xV,yVxRzVRN+1
25 2 24 mpcom RVNr=Rn=N+1ifn=0Idomrranrseq1xV,yVxrzVrn=ifN+1=0IdomRranRseq1xV,yVxRzVRN+1
26 elex RVRV
27 26 adantr RVNRV
28 simpr RVNN
29 28 peano2nnd RVNN+1
30 29 nnnn0d RVNN+10
31 dmexg RVdomRV
32 rnexg RVranRV
33 unexg domRVranRVdomRranRV
34 31 32 33 syl2anc RVdomRranRV
35 resiexg domRranRVIdomRranRV
36 34 35 syl RVIdomRranRV
37 36 adantr RVNIdomRranRV
38 fvexd RVNseq1xV,yVxRzVRN+1V
39 37 38 ifcld RVNifN+1=0IdomRranRseq1xV,yVxRzVRN+1V
40 1 25 27 30 39 ovmpod RVNRrV,n0ifn=0Idomrranrseq1xV,yVxrzVrnN+1=ifN+1=0IdomRranRseq1xV,yVxRzVRN+1
41 nnne0 N+1N+10
42 41 neneqd N+1¬N+1=0
43 29 42 syl RVN¬N+1=0
44 43 iffalsed RVNifN+1=0IdomRranRseq1xV,yVxRzVRN+1=seq1xV,yVxRzVRN+1
45 elnnuz NN1
46 45 biimpi NN1
47 46 adantl RVNN1
48 seqp1 N1seq1xV,yVxRzVRN+1=seq1xV,yVxRzVRNxV,yVxRzVRN+1
49 47 48 syl RVNseq1xV,yVxRzVRN+1=seq1xV,yVxRzVRNxV,yVxRzVRN+1
50 ovex N+1V
51 simpl RVNRV
52 eqidd z=N+1R=R
53 eqid zVR=zVR
54 52 53 fvmptg N+1VRVzVRN+1=R
55 50 51 54 sylancr RVNzVRN+1=R
56 55 oveq2d RVNseq1xV,yVxRzVRNxV,yVxRzVRN+1=seq1xV,yVxRzVRNxV,yVxRR
57 nfcv _axR
58 nfcv _bxR
59 nfcv _xaR
60 nfcv _yaR
61 simpl x=ay=bx=a
62 61 coeq1d x=ay=bxR=aR
63 57 58 59 60 62 cbvmpo xV,yVxR=aV,bVaR
64 oveq xV,yVxR=aV,bVaRseq1xV,yVxRzVRNxV,yVxRR=seq1xV,yVxRzVRNaV,bVaRR
65 63 64 mp1i RVNseq1xV,yVxRzVRNxV,yVxRR=seq1xV,yVxRzVRNaV,bVaRR
66 eqidd RVNaV,bVaR=aV,bVaR
67 simprl RVNa=seq1xV,yVxRzVRNb=Ra=seq1xV,yVxRzVRN
68 67 coeq1d RVNa=seq1xV,yVxRzVRNb=RaR=seq1xV,yVxRzVRNR
69 fvexd RVNseq1xV,yVxRzVRNV
70 fvex seq1xV,yVxRzVRNV
71 coexg seq1xV,yVxRzVRNVRVseq1xV,yVxRzVRNRV
72 70 51 71 sylancr RVNseq1xV,yVxRzVRNRV
73 66 68 69 27 72 ovmpod RVNseq1xV,yVxRzVRNaV,bVaRR=seq1xV,yVxRzVRNR
74 simpr r=Rn=Nn=N
75 74 eqeq1d r=Rn=Nn=0N=0
76 6 adantr r=Rn=NIdomrranr=IdomRranR
77 12 adantr r=Rn=Nseq1xV,yVxrzVr=seq1xV,yVxRzVR
78 77 74 fveq12d r=Rn=Nseq1xV,yVxrzVrn=seq1xV,yVxRzVRN
79 75 76 78 ifbieq12d r=Rn=Nifn=0Idomrranrseq1xV,yVxrzVrn=ifN=0IdomRranRseq1xV,yVxRzVRN
80 79 adantl RVNr=Rn=Nifn=0Idomrranrseq1xV,yVxrzVrn=ifN=0IdomRranRseq1xV,yVxRzVRN
81 28 nnnn0d RVNN0
82 37 69 ifcld RVNifN=0IdomRranRseq1xV,yVxRzVRNV
83 1 80 27 81 82 ovmpod RVNRrV,n0ifn=0Idomrranrseq1xV,yVxrzVrnN=ifN=0IdomRranRseq1xV,yVxRzVRN
84 nnne0 NN0
85 84 adantl RVNN0
86 85 neneqd RVN¬N=0
87 86 iffalsed RVNifN=0IdomRranRseq1xV,yVxRzVRN=seq1xV,yVxRzVRN
88 83 87 eqtr2d RVNseq1xV,yVxRzVRN=RrV,n0ifn=0Idomrranrseq1xV,yVxrzVrnN
89 88 coeq1d RVNseq1xV,yVxRzVRNR=RrV,n0ifn=0Idomrranrseq1xV,yVxrzVrnNR
90 65 73 89 3eqtrd RVNseq1xV,yVxRzVRNxV,yVxRR=RrV,n0ifn=0Idomrranrseq1xV,yVxrzVrnNR
91 49 56 90 3eqtrd RVNseq1xV,yVxRzVRN+1=RrV,n0ifn=0Idomrranrseq1xV,yVxrzVrnNR
92 40 44 91 3eqtrd RVNRrV,n0ifn=0Idomrranrseq1xV,yVxrzVrnN+1=RrV,n0ifn=0Idomrranrseq1xV,yVxrzVrnNR
93 df-relexp r=rV,n0ifn=0Idomrranrseq1xV,yVxrzVrn
94 oveq r=rV,n0ifn=0Idomrranrseq1xV,yVxrzVrnRrN+1=RrV,n0ifn=0Idomrranrseq1xV,yVxrzVrnN+1
95 oveq r=rV,n0ifn=0Idomrranrseq1xV,yVxrzVrnRrN=RrV,n0ifn=0Idomrranrseq1xV,yVxrzVrnN
96 95 coeq1d r=rV,n0ifn=0Idomrranrseq1xV,yVxrzVrnRrNR=RrV,n0ifn=0Idomrranrseq1xV,yVxrzVrnNR
97 94 96 eqeq12d r=rV,n0ifn=0Idomrranrseq1xV,yVxrzVrnRrN+1=RrNRRrV,n0ifn=0Idomrranrseq1xV,yVxrzVrnN+1=RrV,n0ifn=0Idomrranrseq1xV,yVxrzVrnNR
98 97 imbi2d r=rV,n0ifn=0Idomrranrseq1xV,yVxrzVrnRVNRrN+1=RrNRRVNRrV,n0ifn=0Idomrranrseq1xV,yVxrzVrnN+1=RrV,n0ifn=0Idomrranrseq1xV,yVxrzVrnNR
99 93 98 ax-mp RVNRrN+1=RrNRRVNRrV,n0ifn=0Idomrranrseq1xV,yVxrzVrnN+1=RrV,n0ifn=0Idomrranrseq1xV,yVxrzVrnNR
100 92 99 mpbir RVNRrN+1=RrNR