Metamath Proof Explorer


Theorem seqeq123d

Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013)

Ref Expression
Hypotheses seqeq123d.1 φM=N
seqeq123d.2 φ+˙=Q
seqeq123d.3 φF=G
Assertion seqeq123d φseqM+˙F=seqNQG

Proof

Step Hyp Ref Expression
1 seqeq123d.1 φM=N
2 seqeq123d.2 φ+˙=Q
3 seqeq123d.3 φF=G
4 1 seqeq1d φseqM+˙F=seqN+˙F
5 2 seqeq2d φseqN+˙F=seqNQF
6 3 seqeq3d φseqNQF=seqNQG
7 4 5 6 3eqtrd φseqM+˙F=seqNQG