Metamath Proof Explorer


Theorem nfseq

Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses nfseq.1 _xM
nfseq.2 _x+˙
nfseq.3 _xF
Assertion nfseq _xseqM+˙F

Proof

Step Hyp Ref Expression
1 nfseq.1 _xM
2 nfseq.2 _x+˙
3 nfseq.3 _xF
4 df-seq seqM+˙F=reczV,wVz+1w+˙Fz+1MFMω
5 nfcv _xV
6 nfcv _xz+1
7 nfcv _xw
8 3 6 nffv _xFz+1
9 7 2 8 nfov _xw+˙Fz+1
10 6 9 nfop _xz+1w+˙Fz+1
11 5 5 10 nfmpo _xzV,wVz+1w+˙Fz+1
12 3 1 nffv _xFM
13 1 12 nfop _xMFM
14 11 13 nfrdg _xreczV,wVz+1w+˙Fz+1MFM
15 nfcv _xω
16 14 15 nfima _xreczV,wVz+1w+˙Fz+1MFMω
17 4 16 nfcxfr _xseqM+˙F