Metamath Proof Explorer


Definition df-relexp

Description: Definition of repeated composition of a relation with itself, aka relation exponentiation. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 22-May-2020)

Ref Expression
Assertion df-relexp r=rV,n0ifn=0Idomrranrseq1xV,yVxrzVrn

Detailed syntax breakdown

Step Hyp Ref Expression
0 crelexp classr
1 vr setvarr
2 cvv classV
3 vn setvarn
4 cn0 class0
5 3 cv setvarn
6 cc0 class0
7 5 6 wceq wffn=0
8 cid classI
9 1 cv setvarr
10 9 cdm classdomr
11 9 crn classranr
12 10 11 cun classdomrranr
13 8 12 cres classIdomrranr
14 c1 class1
15 vx setvarx
16 vy setvary
17 15 cv setvarx
18 17 9 ccom classxr
19 15 16 2 2 18 cmpo classxV,yVxr
20 vz setvarz
21 20 2 9 cmpt classzVr
22 19 21 14 cseq classseq1xV,yVxrzVr
23 5 22 cfv classseq1xV,yVxrzVrn
24 7 13 23 cif classifn=0Idomrranrseq1xV,yVxrzVrn
25 1 3 2 4 24 cmpo classrV,n0ifn=0Idomrranrseq1xV,yVxrzVrn
26 0 25 wceq wffr=rV,n0ifn=0Idomrranrseq1xV,yVxrzVrn