Step |
Hyp |
Ref |
Expression |
0 |
|
crelexp |
|- ^r |
1 |
|
vr |
|- r |
2 |
|
cvv |
|- _V |
3 |
|
vn |
|- n |
4 |
|
cn0 |
|- NN0 |
5 |
3
|
cv |
|- n |
6 |
|
cc0 |
|- 0 |
7 |
5 6
|
wceq |
|- n = 0 |
8 |
|
cid |
|- _I |
9 |
1
|
cv |
|- r |
10 |
9
|
cdm |
|- dom r |
11 |
9
|
crn |
|- ran r |
12 |
10 11
|
cun |
|- ( dom r u. ran r ) |
13 |
8 12
|
cres |
|- ( _I |` ( dom r u. ran r ) ) |
14 |
|
c1 |
|- 1 |
15 |
|
vx |
|- x |
16 |
|
vy |
|- y |
17 |
15
|
cv |
|- x |
18 |
17 9
|
ccom |
|- ( x o. r ) |
19 |
15 16 2 2 18
|
cmpo |
|- ( x e. _V , y e. _V |-> ( x o. r ) ) |
20 |
|
vz |
|- z |
21 |
20 2 9
|
cmpt |
|- ( z e. _V |-> r ) |
22 |
19 21 14
|
cseq |
|- seq 1 ( ( x e. _V , y e. _V |-> ( x o. r ) ) , ( z e. _V |-> r ) ) |
23 |
5 22
|
cfv |
|- ( seq 1 ( ( x e. _V , y e. _V |-> ( x o. r ) ) , ( z e. _V |-> r ) ) ` n ) |
24 |
7 13 23
|
cif |
|- if ( n = 0 , ( _I |` ( dom r u. ran r ) ) , ( seq 1 ( ( x e. _V , y e. _V |-> ( x o. r ) ) , ( z e. _V |-> r ) ) ` n ) ) |
25 |
1 3 2 4 24
|
cmpo |
|- ( r e. _V , n e. NN0 |-> if ( n = 0 , ( _I |` ( dom r u. ran r ) ) , ( seq 1 ( ( x e. _V , y e. _V |-> ( x o. r ) ) , ( z e. _V |-> r ) ) ` n ) ) ) |
26 |
0 25
|
wceq |
|- ^r = ( r e. _V , n e. NN0 |-> if ( n = 0 , ( _I |` ( dom r u. ran r ) ) , ( seq 1 ( ( x e. _V , y e. _V |-> ( x o. r ) ) , ( z e. _V |-> r ) ) ` n ) ) ) |