Step |
Hyp |
Ref |
Expression |
1 |
|
eluzge2nn0 |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN0 ) |
2 |
1
|
adantr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ R e. V ) -> N e. NN0 ) |
3 |
|
simpr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ R e. V ) -> R e. V ) |
4 |
|
eluz2b3 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ N =/= 1 ) ) |
5 |
4
|
simprbi |
|- ( N e. ( ZZ>= ` 2 ) -> N =/= 1 ) |
6 |
5
|
adantr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ R e. V ) -> N =/= 1 ) |
7 |
6
|
neneqd |
|- ( ( N e. ( ZZ>= ` 2 ) /\ R e. V ) -> -. N = 1 ) |
8 |
7
|
pm2.21d |
|- ( ( N e. ( ZZ>= ` 2 ) /\ R e. V ) -> ( N = 1 -> Rel R ) ) |
9 |
|
relexprelg |
|- ( ( N e. NN0 /\ R e. V /\ ( N = 1 -> Rel R ) ) -> Rel ( R ^r N ) ) |
10 |
2 3 8 9
|
syl3anc |
|- ( ( N e. ( ZZ>= ` 2 ) /\ R e. V ) -> Rel ( R ^r N ) ) |