| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluzge2nn0 |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN0 ) |
| 2 |
1
|
adantr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ R e. V ) -> N e. NN0 ) |
| 3 |
|
simpr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ R e. V ) -> R e. V ) |
| 4 |
|
eluz2b3 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ N =/= 1 ) ) |
| 5 |
4
|
simprbi |
|- ( N e. ( ZZ>= ` 2 ) -> N =/= 1 ) |
| 6 |
5
|
adantr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ R e. V ) -> N =/= 1 ) |
| 7 |
6
|
neneqd |
|- ( ( N e. ( ZZ>= ` 2 ) /\ R e. V ) -> -. N = 1 ) |
| 8 |
7
|
pm2.21d |
|- ( ( N e. ( ZZ>= ` 2 ) /\ R e. V ) -> ( N = 1 -> Rel R ) ) |
| 9 |
|
relexprelg |
|- ( ( N e. NN0 /\ R e. V /\ ( N = 1 -> Rel R ) ) -> Rel ( R ^r N ) ) |
| 10 |
2 3 8 9
|
syl3anc |
|- ( ( N e. ( ZZ>= ` 2 ) /\ R e. V ) -> Rel ( R ^r N ) ) |