Metamath Proof Explorer


Theorem relexpuzrel

Description: The exponentiation of a class to an integer not smaller than 2 is a relation. (Contributed by RP, 23-May-2020)

Ref Expression
Assertion relexpuzrel
|- ( ( N e. ( ZZ>= ` 2 ) /\ R e. V ) -> Rel ( R ^r N ) )

Proof

Step Hyp Ref Expression
1 eluzge2nn0
 |-  ( N e. ( ZZ>= ` 2 ) -> N e. NN0 )
2 1 adantr
 |-  ( ( N e. ( ZZ>= ` 2 ) /\ R e. V ) -> N e. NN0 )
3 simpr
 |-  ( ( N e. ( ZZ>= ` 2 ) /\ R e. V ) -> R e. V )
4 eluz2b3
 |-  ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ N =/= 1 ) )
5 4 simprbi
 |-  ( N e. ( ZZ>= ` 2 ) -> N =/= 1 )
6 5 adantr
 |-  ( ( N e. ( ZZ>= ` 2 ) /\ R e. V ) -> N =/= 1 )
7 6 neneqd
 |-  ( ( N e. ( ZZ>= ` 2 ) /\ R e. V ) -> -. N = 1 )
8 7 pm2.21d
 |-  ( ( N e. ( ZZ>= ` 2 ) /\ R e. V ) -> ( N = 1 -> Rel R ) )
9 relexprelg
 |-  ( ( N e. NN0 /\ R e. V /\ ( N = 1 -> Rel R ) ) -> Rel ( R ^r N ) )
10 2 3 8 9 syl3anc
 |-  ( ( N e. ( ZZ>= ` 2 ) /\ R e. V ) -> Rel ( R ^r N ) )