| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
| 2 |
|
eqeq1 |
|- ( n = 1 -> ( n = 1 <-> 1 = 1 ) ) |
| 3 |
2
|
imbi1d |
|- ( n = 1 -> ( ( n = 1 -> Rel R ) <-> ( 1 = 1 -> Rel R ) ) ) |
| 4 |
3
|
anbi2d |
|- ( n = 1 -> ( ( R e. V /\ ( n = 1 -> Rel R ) ) <-> ( R e. V /\ ( 1 = 1 -> Rel R ) ) ) ) |
| 5 |
|
oveq2 |
|- ( n = 1 -> ( R ^r n ) = ( R ^r 1 ) ) |
| 6 |
5
|
releqd |
|- ( n = 1 -> ( Rel ( R ^r n ) <-> Rel ( R ^r 1 ) ) ) |
| 7 |
4 6
|
imbi12d |
|- ( n = 1 -> ( ( ( R e. V /\ ( n = 1 -> Rel R ) ) -> Rel ( R ^r n ) ) <-> ( ( R e. V /\ ( 1 = 1 -> Rel R ) ) -> Rel ( R ^r 1 ) ) ) ) |
| 8 |
|
eqeq1 |
|- ( n = m -> ( n = 1 <-> m = 1 ) ) |
| 9 |
8
|
imbi1d |
|- ( n = m -> ( ( n = 1 -> Rel R ) <-> ( m = 1 -> Rel R ) ) ) |
| 10 |
9
|
anbi2d |
|- ( n = m -> ( ( R e. V /\ ( n = 1 -> Rel R ) ) <-> ( R e. V /\ ( m = 1 -> Rel R ) ) ) ) |
| 11 |
|
oveq2 |
|- ( n = m -> ( R ^r n ) = ( R ^r m ) ) |
| 12 |
11
|
releqd |
|- ( n = m -> ( Rel ( R ^r n ) <-> Rel ( R ^r m ) ) ) |
| 13 |
10 12
|
imbi12d |
|- ( n = m -> ( ( ( R e. V /\ ( n = 1 -> Rel R ) ) -> Rel ( R ^r n ) ) <-> ( ( R e. V /\ ( m = 1 -> Rel R ) ) -> Rel ( R ^r m ) ) ) ) |
| 14 |
|
eqeq1 |
|- ( n = ( m + 1 ) -> ( n = 1 <-> ( m + 1 ) = 1 ) ) |
| 15 |
14
|
imbi1d |
|- ( n = ( m + 1 ) -> ( ( n = 1 -> Rel R ) <-> ( ( m + 1 ) = 1 -> Rel R ) ) ) |
| 16 |
15
|
anbi2d |
|- ( n = ( m + 1 ) -> ( ( R e. V /\ ( n = 1 -> Rel R ) ) <-> ( R e. V /\ ( ( m + 1 ) = 1 -> Rel R ) ) ) ) |
| 17 |
|
oveq2 |
|- ( n = ( m + 1 ) -> ( R ^r n ) = ( R ^r ( m + 1 ) ) ) |
| 18 |
17
|
releqd |
|- ( n = ( m + 1 ) -> ( Rel ( R ^r n ) <-> Rel ( R ^r ( m + 1 ) ) ) ) |
| 19 |
16 18
|
imbi12d |
|- ( n = ( m + 1 ) -> ( ( ( R e. V /\ ( n = 1 -> Rel R ) ) -> Rel ( R ^r n ) ) <-> ( ( R e. V /\ ( ( m + 1 ) = 1 -> Rel R ) ) -> Rel ( R ^r ( m + 1 ) ) ) ) ) |
| 20 |
|
eqeq1 |
|- ( n = N -> ( n = 1 <-> N = 1 ) ) |
| 21 |
20
|
imbi1d |
|- ( n = N -> ( ( n = 1 -> Rel R ) <-> ( N = 1 -> Rel R ) ) ) |
| 22 |
21
|
anbi2d |
|- ( n = N -> ( ( R e. V /\ ( n = 1 -> Rel R ) ) <-> ( R e. V /\ ( N = 1 -> Rel R ) ) ) ) |
| 23 |
|
oveq2 |
|- ( n = N -> ( R ^r n ) = ( R ^r N ) ) |
| 24 |
23
|
releqd |
|- ( n = N -> ( Rel ( R ^r n ) <-> Rel ( R ^r N ) ) ) |
| 25 |
22 24
|
imbi12d |
|- ( n = N -> ( ( ( R e. V /\ ( n = 1 -> Rel R ) ) -> Rel ( R ^r n ) ) <-> ( ( R e. V /\ ( N = 1 -> Rel R ) ) -> Rel ( R ^r N ) ) ) ) |
| 26 |
|
eqid |
|- 1 = 1 |
| 27 |
|
pm2.27 |
|- ( 1 = 1 -> ( ( 1 = 1 -> Rel R ) -> Rel R ) ) |
| 28 |
26 27
|
ax-mp |
|- ( ( 1 = 1 -> Rel R ) -> Rel R ) |
| 29 |
28
|
adantl |
|- ( ( R e. V /\ ( 1 = 1 -> Rel R ) ) -> Rel R ) |
| 30 |
|
relexp1g |
|- ( R e. V -> ( R ^r 1 ) = R ) |
| 31 |
30
|
adantr |
|- ( ( R e. V /\ ( 1 = 1 -> Rel R ) ) -> ( R ^r 1 ) = R ) |
| 32 |
31
|
releqd |
|- ( ( R e. V /\ ( 1 = 1 -> Rel R ) ) -> ( Rel ( R ^r 1 ) <-> Rel R ) ) |
| 33 |
29 32
|
mpbird |
|- ( ( R e. V /\ ( 1 = 1 -> Rel R ) ) -> Rel ( R ^r 1 ) ) |
| 34 |
|
relco |
|- Rel ( ( R ^r m ) o. R ) |
| 35 |
|
relexpsucnnr |
|- ( ( R e. V /\ m e. NN ) -> ( R ^r ( m + 1 ) ) = ( ( R ^r m ) o. R ) ) |
| 36 |
35
|
ancoms |
|- ( ( m e. NN /\ R e. V ) -> ( R ^r ( m + 1 ) ) = ( ( R ^r m ) o. R ) ) |
| 37 |
36
|
releqd |
|- ( ( m e. NN /\ R e. V ) -> ( Rel ( R ^r ( m + 1 ) ) <-> Rel ( ( R ^r m ) o. R ) ) ) |
| 38 |
34 37
|
mpbiri |
|- ( ( m e. NN /\ R e. V ) -> Rel ( R ^r ( m + 1 ) ) ) |
| 39 |
38
|
a1d |
|- ( ( m e. NN /\ R e. V ) -> ( ( ( m + 1 ) = 1 -> Rel R ) -> Rel ( R ^r ( m + 1 ) ) ) ) |
| 40 |
39
|
expimpd |
|- ( m e. NN -> ( ( R e. V /\ ( ( m + 1 ) = 1 -> Rel R ) ) -> Rel ( R ^r ( m + 1 ) ) ) ) |
| 41 |
40
|
a1d |
|- ( m e. NN -> ( ( ( R e. V /\ ( m = 1 -> Rel R ) ) -> Rel ( R ^r m ) ) -> ( ( R e. V /\ ( ( m + 1 ) = 1 -> Rel R ) ) -> Rel ( R ^r ( m + 1 ) ) ) ) ) |
| 42 |
7 13 19 25 33 41
|
nnind |
|- ( N e. NN -> ( ( R e. V /\ ( N = 1 -> Rel R ) ) -> Rel ( R ^r N ) ) ) |
| 43 |
|
relexp0rel |
|- ( R e. V -> Rel ( R ^r 0 ) ) |
| 44 |
43
|
adantl |
|- ( ( N = 0 /\ R e. V ) -> Rel ( R ^r 0 ) ) |
| 45 |
|
simpl |
|- ( ( N = 0 /\ R e. V ) -> N = 0 ) |
| 46 |
45
|
oveq2d |
|- ( ( N = 0 /\ R e. V ) -> ( R ^r N ) = ( R ^r 0 ) ) |
| 47 |
46
|
releqd |
|- ( ( N = 0 /\ R e. V ) -> ( Rel ( R ^r N ) <-> Rel ( R ^r 0 ) ) ) |
| 48 |
44 47
|
mpbird |
|- ( ( N = 0 /\ R e. V ) -> Rel ( R ^r N ) ) |
| 49 |
48
|
a1d |
|- ( ( N = 0 /\ R e. V ) -> ( ( N = 1 -> Rel R ) -> Rel ( R ^r N ) ) ) |
| 50 |
49
|
expimpd |
|- ( N = 0 -> ( ( R e. V /\ ( N = 1 -> Rel R ) ) -> Rel ( R ^r N ) ) ) |
| 51 |
42 50
|
jaoi |
|- ( ( N e. NN \/ N = 0 ) -> ( ( R e. V /\ ( N = 1 -> Rel R ) ) -> Rel ( R ^r N ) ) ) |
| 52 |
1 51
|
sylbi |
|- ( N e. NN0 -> ( ( R e. V /\ ( N = 1 -> Rel R ) ) -> Rel ( R ^r N ) ) ) |
| 53 |
52
|
3impib |
|- ( ( N e. NN0 /\ R e. V /\ ( N = 1 -> Rel R ) ) -> Rel ( R ^r N ) ) |