Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
2 |
|
eqeq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 = 1 ↔ 1 = 1 ) ) |
3 |
2
|
imbi1d |
⊢ ( 𝑛 = 1 → ( ( 𝑛 = 1 → Rel 𝑅 ) ↔ ( 1 = 1 → Rel 𝑅 ) ) ) |
4 |
3
|
anbi2d |
⊢ ( 𝑛 = 1 → ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑛 = 1 → Rel 𝑅 ) ) ↔ ( 𝑅 ∈ 𝑉 ∧ ( 1 = 1 → Rel 𝑅 ) ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 𝑅 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 1 ) ) |
6 |
5
|
releqd |
⊢ ( 𝑛 = 1 → ( Rel ( 𝑅 ↑𝑟 𝑛 ) ↔ Rel ( 𝑅 ↑𝑟 1 ) ) ) |
7 |
4 6
|
imbi12d |
⊢ ( 𝑛 = 1 → ( ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑛 = 1 → Rel 𝑅 ) ) → Rel ( 𝑅 ↑𝑟 𝑛 ) ) ↔ ( ( 𝑅 ∈ 𝑉 ∧ ( 1 = 1 → Rel 𝑅 ) ) → Rel ( 𝑅 ↑𝑟 1 ) ) ) ) |
8 |
|
eqeq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 = 1 ↔ 𝑚 = 1 ) ) |
9 |
8
|
imbi1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑛 = 1 → Rel 𝑅 ) ↔ ( 𝑚 = 1 → Rel 𝑅 ) ) ) |
10 |
9
|
anbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑛 = 1 → Rel 𝑅 ) ) ↔ ( 𝑅 ∈ 𝑉 ∧ ( 𝑚 = 1 → Rel 𝑅 ) ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑅 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 𝑚 ) ) |
12 |
11
|
releqd |
⊢ ( 𝑛 = 𝑚 → ( Rel ( 𝑅 ↑𝑟 𝑛 ) ↔ Rel ( 𝑅 ↑𝑟 𝑚 ) ) ) |
13 |
10 12
|
imbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑛 = 1 → Rel 𝑅 ) ) → Rel ( 𝑅 ↑𝑟 𝑛 ) ) ↔ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑚 = 1 → Rel 𝑅 ) ) → Rel ( 𝑅 ↑𝑟 𝑚 ) ) ) ) |
14 |
|
eqeq1 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑛 = 1 ↔ ( 𝑚 + 1 ) = 1 ) ) |
15 |
14
|
imbi1d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝑛 = 1 → Rel 𝑅 ) ↔ ( ( 𝑚 + 1 ) = 1 → Rel 𝑅 ) ) ) |
16 |
15
|
anbi2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑛 = 1 → Rel 𝑅 ) ) ↔ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑚 + 1 ) = 1 → Rel 𝑅 ) ) ) ) |
17 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑅 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ) |
18 |
17
|
releqd |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( Rel ( 𝑅 ↑𝑟 𝑛 ) ↔ Rel ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ) ) |
19 |
16 18
|
imbi12d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑛 = 1 → Rel 𝑅 ) ) → Rel ( 𝑅 ↑𝑟 𝑛 ) ) ↔ ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑚 + 1 ) = 1 → Rel 𝑅 ) ) → Rel ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ) ) ) |
20 |
|
eqeq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 = 1 ↔ 𝑁 = 1 ) ) |
21 |
20
|
imbi1d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 = 1 → Rel 𝑅 ) ↔ ( 𝑁 = 1 → Rel 𝑅 ) ) ) |
22 |
21
|
anbi2d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑛 = 1 → Rel 𝑅 ) ) ↔ ( 𝑅 ∈ 𝑉 ∧ ( 𝑁 = 1 → Rel 𝑅 ) ) ) ) |
23 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝑅 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
24 |
23
|
releqd |
⊢ ( 𝑛 = 𝑁 → ( Rel ( 𝑅 ↑𝑟 𝑛 ) ↔ Rel ( 𝑅 ↑𝑟 𝑁 ) ) ) |
25 |
22 24
|
imbi12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑛 = 1 → Rel 𝑅 ) ) → Rel ( 𝑅 ↑𝑟 𝑛 ) ) ↔ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑁 = 1 → Rel 𝑅 ) ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) ) ) |
26 |
|
eqid |
⊢ 1 = 1 |
27 |
|
pm2.27 |
⊢ ( 1 = 1 → ( ( 1 = 1 → Rel 𝑅 ) → Rel 𝑅 ) ) |
28 |
26 27
|
ax-mp |
⊢ ( ( 1 = 1 → Rel 𝑅 ) → Rel 𝑅 ) |
29 |
28
|
adantl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 1 = 1 → Rel 𝑅 ) ) → Rel 𝑅 ) |
30 |
|
relexp1g |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
31 |
30
|
adantr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 1 = 1 → Rel 𝑅 ) ) → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
32 |
31
|
releqd |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 1 = 1 → Rel 𝑅 ) ) → ( Rel ( 𝑅 ↑𝑟 1 ) ↔ Rel 𝑅 ) ) |
33 |
29 32
|
mpbird |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 1 = 1 → Rel 𝑅 ) ) → Rel ( 𝑅 ↑𝑟 1 ) ) |
34 |
|
relco |
⊢ Rel ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) |
35 |
|
relexpsucnnr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) = ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) ) |
36 |
35
|
ancoms |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) = ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) ) |
37 |
36
|
releqd |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ( Rel ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ↔ Rel ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) ) ) |
38 |
34 37
|
mpbiri |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ) |
39 |
38
|
a1d |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ( ( ( 𝑚 + 1 ) = 1 → Rel 𝑅 ) → Rel ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ) ) |
40 |
39
|
expimpd |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑚 + 1 ) = 1 → Rel 𝑅 ) ) → Rel ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ) ) |
41 |
40
|
a1d |
⊢ ( 𝑚 ∈ ℕ → ( ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑚 = 1 → Rel 𝑅 ) ) → Rel ( 𝑅 ↑𝑟 𝑚 ) ) → ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑚 + 1 ) = 1 → Rel 𝑅 ) ) → Rel ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ) ) ) |
42 |
7 13 19 25 33 41
|
nnind |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑁 = 1 → Rel 𝑅 ) ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) ) |
43 |
|
relexp0rel |
⊢ ( 𝑅 ∈ 𝑉 → Rel ( 𝑅 ↑𝑟 0 ) ) |
44 |
43
|
adantl |
⊢ ( ( 𝑁 = 0 ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 0 ) ) |
45 |
|
simpl |
⊢ ( ( 𝑁 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 = 0 ) |
46 |
45
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑁 ) = ( 𝑅 ↑𝑟 0 ) ) |
47 |
46
|
releqd |
⊢ ( ( 𝑁 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( Rel ( 𝑅 ↑𝑟 𝑁 ) ↔ Rel ( 𝑅 ↑𝑟 0 ) ) ) |
48 |
44 47
|
mpbird |
⊢ ( ( 𝑁 = 0 ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) |
49 |
48
|
a1d |
⊢ ( ( 𝑁 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑁 = 1 → Rel 𝑅 ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) ) |
50 |
49
|
expimpd |
⊢ ( 𝑁 = 0 → ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑁 = 1 → Rel 𝑅 ) ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) ) |
51 |
42 50
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑁 = 1 → Rel 𝑅 ) ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) ) |
52 |
1 51
|
sylbi |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑁 = 1 → Rel 𝑅 ) ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) ) |
53 |
52
|
3impib |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ ( 𝑁 = 1 → Rel 𝑅 ) ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) |