Step |
Hyp |
Ref |
Expression |
1 |
|
df-relexp |
⊢ ↑𝑟 = ( 𝑟 ∈ V , 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) , ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) ‘ 𝑛 ) ) ) |
2 |
1
|
a1i |
⊢ ( 𝑅 ∈ 𝑉 → ↑𝑟 = ( 𝑟 ∈ V , 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) , ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) ‘ 𝑛 ) ) ) ) |
3 |
|
simprr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑟 = 𝑅 ∧ 𝑛 = 1 ) ) → 𝑛 = 1 ) |
4 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
5 |
|
neeq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 ≠ 0 ↔ 1 ≠ 0 ) ) |
6 |
4 5
|
mpbiri |
⊢ ( 𝑛 = 1 → 𝑛 ≠ 0 ) |
7 |
3 6
|
syl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑟 = 𝑅 ∧ 𝑛 = 1 ) ) → 𝑛 ≠ 0 ) |
8 |
7
|
neneqd |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑟 = 𝑅 ∧ 𝑛 = 1 ) ) → ¬ 𝑛 = 0 ) |
9 |
8
|
iffalsed |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑟 = 𝑅 ∧ 𝑛 = 1 ) ) → if ( 𝑛 = 0 , ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) , ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) ‘ 𝑛 ) ) = ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) ‘ 𝑛 ) ) |
10 |
|
simprl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑟 = 𝑅 ∧ 𝑛 = 1 ) ) → 𝑟 = 𝑅 ) |
11 |
10
|
mpteq2dv |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑟 = 𝑅 ∧ 𝑛 = 1 ) ) → ( 𝑧 ∈ V ↦ 𝑟 ) = ( 𝑧 ∈ V ↦ 𝑅 ) ) |
12 |
11
|
seqeq3d |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑟 = 𝑅 ∧ 𝑛 = 1 ) ) → seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) = seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑅 ) ) ) |
13 |
12 3
|
fveq12d |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑟 = 𝑅 ∧ 𝑛 = 1 ) ) → ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) ‘ 𝑛 ) = ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑅 ) ) ‘ 1 ) ) |
14 |
|
1z |
⊢ 1 ∈ ℤ |
15 |
|
eqidd |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑟 = 𝑅 ∧ 𝑛 = 1 ) ) → ( 𝑧 ∈ V ↦ 𝑅 ) = ( 𝑧 ∈ V ↦ 𝑅 ) ) |
16 |
|
eqidd |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑟 = 𝑅 ∧ 𝑛 = 1 ) ) ∧ 𝑧 = 1 ) → 𝑅 = 𝑅 ) |
17 |
|
1ex |
⊢ 1 ∈ V |
18 |
17
|
a1i |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑟 = 𝑅 ∧ 𝑛 = 1 ) ) → 1 ∈ V ) |
19 |
|
simpl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑟 = 𝑅 ∧ 𝑛 = 1 ) ) → 𝑅 ∈ 𝑉 ) |
20 |
15 16 18 19
|
fvmptd |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑟 = 𝑅 ∧ 𝑛 = 1 ) ) → ( ( 𝑧 ∈ V ↦ 𝑅 ) ‘ 1 ) = 𝑅 ) |
21 |
14 20
|
seq1i |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑟 = 𝑅 ∧ 𝑛 = 1 ) ) → ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑅 ) ) ‘ 1 ) = 𝑅 ) |
22 |
9 13 21
|
3eqtrd |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑟 = 𝑅 ∧ 𝑛 = 1 ) ) → if ( 𝑛 = 0 , ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) , ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) ‘ 𝑛 ) ) = 𝑅 ) |
23 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
24 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
25 |
24
|
a1i |
⊢ ( 𝑅 ∈ 𝑉 → 1 ∈ ℕ0 ) |
26 |
2 22 23 25 23
|
ovmpod |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |