Description: The exponentiation of a class is a relation except when the exponent is one and the class is not a relation. (Contributed by RP, 23-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | relexprelg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 | |
|
2 | eqeq1 | |
|
3 | 2 | imbi1d | |
4 | 3 | anbi2d | |
5 | oveq2 | |
|
6 | 5 | releqd | |
7 | 4 6 | imbi12d | |
8 | eqeq1 | |
|
9 | 8 | imbi1d | |
10 | 9 | anbi2d | |
11 | oveq2 | |
|
12 | 11 | releqd | |
13 | 10 12 | imbi12d | |
14 | eqeq1 | |
|
15 | 14 | imbi1d | |
16 | 15 | anbi2d | |
17 | oveq2 | |
|
18 | 17 | releqd | |
19 | 16 18 | imbi12d | |
20 | eqeq1 | |
|
21 | 20 | imbi1d | |
22 | 21 | anbi2d | |
23 | oveq2 | |
|
24 | 23 | releqd | |
25 | 22 24 | imbi12d | |
26 | eqid | |
|
27 | pm2.27 | |
|
28 | 26 27 | ax-mp | |
29 | 28 | adantl | |
30 | relexp1g | |
|
31 | 30 | adantr | |
32 | 31 | releqd | |
33 | 29 32 | mpbird | |
34 | relco | |
|
35 | relexpsucnnr | |
|
36 | 35 | ancoms | |
37 | 36 | releqd | |
38 | 34 37 | mpbiri | |
39 | 38 | a1d | |
40 | 39 | expimpd | |
41 | 40 | a1d | |
42 | 7 13 19 25 33 41 | nnind | |
43 | relexp0rel | |
|
44 | 43 | adantl | |
45 | simpl | |
|
46 | 45 | oveq2d | |
47 | 46 | releqd | |
48 | 44 47 | mpbird | |
49 | 48 | a1d | |
50 | 49 | expimpd | |
51 | 42 50 | jaoi | |
52 | 1 51 | sylbi | |
53 | 52 | 3impib | |