Metamath Proof Explorer


Theorem relexprelg

Description: The exponentiation of a class is a relation except when the exponent is one and the class is not a relation. (Contributed by RP, 23-May-2020)

Ref Expression
Assertion relexprelg N0RVN=1RelRRelRrN

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 eqeq1 n=1n=11=1
3 2 imbi1d n=1n=1RelR1=1RelR
4 3 anbi2d n=1RVn=1RelRRV1=1RelR
5 oveq2 n=1Rrn=Rr1
6 5 releqd n=1RelRrnRelRr1
7 4 6 imbi12d n=1RVn=1RelRRelRrnRV1=1RelRRelRr1
8 eqeq1 n=mn=1m=1
9 8 imbi1d n=mn=1RelRm=1RelR
10 9 anbi2d n=mRVn=1RelRRVm=1RelR
11 oveq2 n=mRrn=Rrm
12 11 releqd n=mRelRrnRelRrm
13 10 12 imbi12d n=mRVn=1RelRRelRrnRVm=1RelRRelRrm
14 eqeq1 n=m+1n=1m+1=1
15 14 imbi1d n=m+1n=1RelRm+1=1RelR
16 15 anbi2d n=m+1RVn=1RelRRVm+1=1RelR
17 oveq2 n=m+1Rrn=Rrm+1
18 17 releqd n=m+1RelRrnRelRrm+1
19 16 18 imbi12d n=m+1RVn=1RelRRelRrnRVm+1=1RelRRelRrm+1
20 eqeq1 n=Nn=1N=1
21 20 imbi1d n=Nn=1RelRN=1RelR
22 21 anbi2d n=NRVn=1RelRRVN=1RelR
23 oveq2 n=NRrn=RrN
24 23 releqd n=NRelRrnRelRrN
25 22 24 imbi12d n=NRVn=1RelRRelRrnRVN=1RelRRelRrN
26 eqid 1=1
27 pm2.27 1=11=1RelRRelR
28 26 27 ax-mp 1=1RelRRelR
29 28 adantl RV1=1RelRRelR
30 relexp1g RVRr1=R
31 30 adantr RV1=1RelRRr1=R
32 31 releqd RV1=1RelRRelRr1RelR
33 29 32 mpbird RV1=1RelRRelRr1
34 relco RelRrmR
35 relexpsucnnr RVmRrm+1=RrmR
36 35 ancoms mRVRrm+1=RrmR
37 36 releqd mRVRelRrm+1RelRrmR
38 34 37 mpbiri mRVRelRrm+1
39 38 a1d mRVm+1=1RelRRelRrm+1
40 39 expimpd mRVm+1=1RelRRelRrm+1
41 40 a1d mRVm=1RelRRelRrmRVm+1=1RelRRelRrm+1
42 7 13 19 25 33 41 nnind NRVN=1RelRRelRrN
43 relexp0rel RVRelRr0
44 43 adantl N=0RVRelRr0
45 simpl N=0RVN=0
46 45 oveq2d N=0RVRrN=Rr0
47 46 releqd N=0RVRelRrNRelRr0
48 44 47 mpbird N=0RVRelRrN
49 48 a1d N=0RVN=1RelRRelRrN
50 49 expimpd N=0RVN=1RelRRelRrN
51 42 50 jaoi NN=0RVN=1RelRRelRrN
52 1 51 sylbi N0RVN=1RelRRelRrN
53 52 3impib N0RVN=1RelRRelRrN