Metamath Proof Explorer


Theorem relexprel

Description: The exponentiation of a relation is a relation. (Contributed by RP, 23-May-2020)

Ref Expression
Assertion relexprel N0RVRelRRelRrN

Proof

Step Hyp Ref Expression
1 ax-1 RelRN=1RelR
2 relexprelg N0RVN=1RelRRelRrN
3 1 2 syl3an3 N0RVRelRRelRrN