Metamath Proof Explorer


Theorem relexpreld

Description: The exponentiation of a relation is a relation. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypotheses relexpreld.1 φ Rel R
relexpreld.2 φ N 0
Assertion relexpreld φ Rel R r N

Proof

Step Hyp Ref Expression
1 relexpreld.1 φ Rel R
2 relexpreld.2 φ N 0
3 2 adantr φ R V N 0
4 simpr φ R V R V
5 1 adantr φ R V Rel R
6 relexprel N 0 R V Rel R Rel R r N
7 3 4 5 6 syl3anc φ R V Rel R r N
8 7 ex φ R V Rel R r N
9 rel0 Rel
10 reldmrelexp Rel dom r
11 10 ovprc1 ¬ R V R r N =
12 11 releqd ¬ R V Rel R r N Rel
13 9 12 mpbiri ¬ R V Rel R r N
14 8 13 pm2.61d1 φ Rel R r N