Metamath Proof Explorer


Theorem relexpreld

Description: The exponentiation of a relation is a relation. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypotheses relexpreld.1 ( 𝜑 → Rel 𝑅 )
relexpreld.2 ( 𝜑𝑁 ∈ ℕ0 )
Assertion relexpreld ( 𝜑 → Rel ( 𝑅𝑟 𝑁 ) )

Proof

Step Hyp Ref Expression
1 relexpreld.1 ( 𝜑 → Rel 𝑅 )
2 relexpreld.2 ( 𝜑𝑁 ∈ ℕ0 )
3 2 adantr ( ( 𝜑𝑅 ∈ V ) → 𝑁 ∈ ℕ0 )
4 simpr ( ( 𝜑𝑅 ∈ V ) → 𝑅 ∈ V )
5 1 adantr ( ( 𝜑𝑅 ∈ V ) → Rel 𝑅 )
6 relexprel ( ( 𝑁 ∈ ℕ0𝑅 ∈ V ∧ Rel 𝑅 ) → Rel ( 𝑅𝑟 𝑁 ) )
7 3 4 5 6 syl3anc ( ( 𝜑𝑅 ∈ V ) → Rel ( 𝑅𝑟 𝑁 ) )
8 7 ex ( 𝜑 → ( 𝑅 ∈ V → Rel ( 𝑅𝑟 𝑁 ) ) )
9 rel0 Rel ∅
10 reldmrelexp Rel dom ↑𝑟
11 10 ovprc1 ( ¬ 𝑅 ∈ V → ( 𝑅𝑟 𝑁 ) = ∅ )
12 11 releqd ( ¬ 𝑅 ∈ V → ( Rel ( 𝑅𝑟 𝑁 ) ↔ Rel ∅ ) )
13 9 12 mpbiri ( ¬ 𝑅 ∈ V → Rel ( 𝑅𝑟 𝑁 ) )
14 8 13 pm2.61d1 ( 𝜑 → Rel ( 𝑅𝑟 𝑁 ) )