| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 𝑅 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 1 ) ) |
| 2 |
1
|
dmeqd |
⊢ ( 𝑛 = 1 → dom ( 𝑅 ↑𝑟 𝑛 ) = dom ( 𝑅 ↑𝑟 1 ) ) |
| 3 |
2
|
sseq1d |
⊢ ( 𝑛 = 1 → ( dom ( 𝑅 ↑𝑟 𝑛 ) ⊆ dom 𝑅 ↔ dom ( 𝑅 ↑𝑟 1 ) ⊆ dom 𝑅 ) ) |
| 4 |
3
|
imbi2d |
⊢ ( 𝑛 = 1 → ( ( 𝑅 ∈ 𝑉 → dom ( 𝑅 ↑𝑟 𝑛 ) ⊆ dom 𝑅 ) ↔ ( 𝑅 ∈ 𝑉 → dom ( 𝑅 ↑𝑟 1 ) ⊆ dom 𝑅 ) ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑅 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 𝑚 ) ) |
| 6 |
5
|
dmeqd |
⊢ ( 𝑛 = 𝑚 → dom ( 𝑅 ↑𝑟 𝑛 ) = dom ( 𝑅 ↑𝑟 𝑚 ) ) |
| 7 |
6
|
sseq1d |
⊢ ( 𝑛 = 𝑚 → ( dom ( 𝑅 ↑𝑟 𝑛 ) ⊆ dom 𝑅 ↔ dom ( 𝑅 ↑𝑟 𝑚 ) ⊆ dom 𝑅 ) ) |
| 8 |
7
|
imbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑅 ∈ 𝑉 → dom ( 𝑅 ↑𝑟 𝑛 ) ⊆ dom 𝑅 ) ↔ ( 𝑅 ∈ 𝑉 → dom ( 𝑅 ↑𝑟 𝑚 ) ⊆ dom 𝑅 ) ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑅 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ) |
| 10 |
9
|
dmeqd |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → dom ( 𝑅 ↑𝑟 𝑛 ) = dom ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ) |
| 11 |
10
|
sseq1d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( dom ( 𝑅 ↑𝑟 𝑛 ) ⊆ dom 𝑅 ↔ dom ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ dom 𝑅 ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝑅 ∈ 𝑉 → dom ( 𝑅 ↑𝑟 𝑛 ) ⊆ dom 𝑅 ) ↔ ( 𝑅 ∈ 𝑉 → dom ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ dom 𝑅 ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝑅 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
| 14 |
13
|
dmeqd |
⊢ ( 𝑛 = 𝑁 → dom ( 𝑅 ↑𝑟 𝑛 ) = dom ( 𝑅 ↑𝑟 𝑁 ) ) |
| 15 |
14
|
sseq1d |
⊢ ( 𝑛 = 𝑁 → ( dom ( 𝑅 ↑𝑟 𝑛 ) ⊆ dom 𝑅 ↔ dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ dom 𝑅 ) ) |
| 16 |
15
|
imbi2d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑅 ∈ 𝑉 → dom ( 𝑅 ↑𝑟 𝑛 ) ⊆ dom 𝑅 ) ↔ ( 𝑅 ∈ 𝑉 → dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ dom 𝑅 ) ) ) |
| 17 |
|
relexp1g |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
| 18 |
17
|
dmeqd |
⊢ ( 𝑅 ∈ 𝑉 → dom ( 𝑅 ↑𝑟 1 ) = dom 𝑅 ) |
| 19 |
|
eqimss |
⊢ ( dom ( 𝑅 ↑𝑟 1 ) = dom 𝑅 → dom ( 𝑅 ↑𝑟 1 ) ⊆ dom 𝑅 ) |
| 20 |
18 19
|
syl |
⊢ ( 𝑅 ∈ 𝑉 → dom ( 𝑅 ↑𝑟 1 ) ⊆ dom 𝑅 ) |
| 21 |
|
relexpsucnnr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) = ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) ) |
| 22 |
21
|
ancoms |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) = ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) ) |
| 23 |
22
|
dmeqd |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) = dom ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) ) |
| 24 |
|
dmcoss |
⊢ dom ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) ⊆ dom 𝑅 |
| 25 |
23 24
|
eqsstrdi |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ dom 𝑅 ) |
| 26 |
25
|
a1d |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ( dom ( 𝑅 ↑𝑟 𝑚 ) ⊆ dom 𝑅 → dom ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ dom 𝑅 ) ) |
| 27 |
26
|
ex |
⊢ ( 𝑚 ∈ ℕ → ( 𝑅 ∈ 𝑉 → ( dom ( 𝑅 ↑𝑟 𝑚 ) ⊆ dom 𝑅 → dom ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ dom 𝑅 ) ) ) |
| 28 |
27
|
a2d |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑅 ∈ 𝑉 → dom ( 𝑅 ↑𝑟 𝑚 ) ⊆ dom 𝑅 ) → ( 𝑅 ∈ 𝑉 → dom ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ dom 𝑅 ) ) ) |
| 29 |
4 8 12 16 20 28
|
nnind |
⊢ ( 𝑁 ∈ ℕ → ( 𝑅 ∈ 𝑉 → dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ dom 𝑅 ) ) |
| 30 |
29
|
imp |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ dom 𝑅 ) |