Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( n = 1 -> ( R ^r n ) = ( R ^r 1 ) ) |
2 |
1
|
dmeqd |
|- ( n = 1 -> dom ( R ^r n ) = dom ( R ^r 1 ) ) |
3 |
2
|
sseq1d |
|- ( n = 1 -> ( dom ( R ^r n ) C_ dom R <-> dom ( R ^r 1 ) C_ dom R ) ) |
4 |
3
|
imbi2d |
|- ( n = 1 -> ( ( R e. V -> dom ( R ^r n ) C_ dom R ) <-> ( R e. V -> dom ( R ^r 1 ) C_ dom R ) ) ) |
5 |
|
oveq2 |
|- ( n = m -> ( R ^r n ) = ( R ^r m ) ) |
6 |
5
|
dmeqd |
|- ( n = m -> dom ( R ^r n ) = dom ( R ^r m ) ) |
7 |
6
|
sseq1d |
|- ( n = m -> ( dom ( R ^r n ) C_ dom R <-> dom ( R ^r m ) C_ dom R ) ) |
8 |
7
|
imbi2d |
|- ( n = m -> ( ( R e. V -> dom ( R ^r n ) C_ dom R ) <-> ( R e. V -> dom ( R ^r m ) C_ dom R ) ) ) |
9 |
|
oveq2 |
|- ( n = ( m + 1 ) -> ( R ^r n ) = ( R ^r ( m + 1 ) ) ) |
10 |
9
|
dmeqd |
|- ( n = ( m + 1 ) -> dom ( R ^r n ) = dom ( R ^r ( m + 1 ) ) ) |
11 |
10
|
sseq1d |
|- ( n = ( m + 1 ) -> ( dom ( R ^r n ) C_ dom R <-> dom ( R ^r ( m + 1 ) ) C_ dom R ) ) |
12 |
11
|
imbi2d |
|- ( n = ( m + 1 ) -> ( ( R e. V -> dom ( R ^r n ) C_ dom R ) <-> ( R e. V -> dom ( R ^r ( m + 1 ) ) C_ dom R ) ) ) |
13 |
|
oveq2 |
|- ( n = N -> ( R ^r n ) = ( R ^r N ) ) |
14 |
13
|
dmeqd |
|- ( n = N -> dom ( R ^r n ) = dom ( R ^r N ) ) |
15 |
14
|
sseq1d |
|- ( n = N -> ( dom ( R ^r n ) C_ dom R <-> dom ( R ^r N ) C_ dom R ) ) |
16 |
15
|
imbi2d |
|- ( n = N -> ( ( R e. V -> dom ( R ^r n ) C_ dom R ) <-> ( R e. V -> dom ( R ^r N ) C_ dom R ) ) ) |
17 |
|
relexp1g |
|- ( R e. V -> ( R ^r 1 ) = R ) |
18 |
17
|
dmeqd |
|- ( R e. V -> dom ( R ^r 1 ) = dom R ) |
19 |
|
eqimss |
|- ( dom ( R ^r 1 ) = dom R -> dom ( R ^r 1 ) C_ dom R ) |
20 |
18 19
|
syl |
|- ( R e. V -> dom ( R ^r 1 ) C_ dom R ) |
21 |
|
relexpsucnnr |
|- ( ( R e. V /\ m e. NN ) -> ( R ^r ( m + 1 ) ) = ( ( R ^r m ) o. R ) ) |
22 |
21
|
ancoms |
|- ( ( m e. NN /\ R e. V ) -> ( R ^r ( m + 1 ) ) = ( ( R ^r m ) o. R ) ) |
23 |
22
|
dmeqd |
|- ( ( m e. NN /\ R e. V ) -> dom ( R ^r ( m + 1 ) ) = dom ( ( R ^r m ) o. R ) ) |
24 |
|
dmcoss |
|- dom ( ( R ^r m ) o. R ) C_ dom R |
25 |
23 24
|
eqsstrdi |
|- ( ( m e. NN /\ R e. V ) -> dom ( R ^r ( m + 1 ) ) C_ dom R ) |
26 |
25
|
a1d |
|- ( ( m e. NN /\ R e. V ) -> ( dom ( R ^r m ) C_ dom R -> dom ( R ^r ( m + 1 ) ) C_ dom R ) ) |
27 |
26
|
ex |
|- ( m e. NN -> ( R e. V -> ( dom ( R ^r m ) C_ dom R -> dom ( R ^r ( m + 1 ) ) C_ dom R ) ) ) |
28 |
27
|
a2d |
|- ( m e. NN -> ( ( R e. V -> dom ( R ^r m ) C_ dom R ) -> ( R e. V -> dom ( R ^r ( m + 1 ) ) C_ dom R ) ) ) |
29 |
4 8 12 16 20 28
|
nnind |
|- ( N e. NN -> ( R e. V -> dom ( R ^r N ) C_ dom R ) ) |
30 |
29
|
imp |
|- ( ( N e. NN /\ R e. V ) -> dom ( R ^r N ) C_ dom R ) |