| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 |  |-  ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) | 
						
							| 2 |  | relexpnndm |  |-  ( ( N e. NN /\ R e. V ) -> dom ( R ^r N ) C_ dom R ) | 
						
							| 3 |  | ssun1 |  |-  dom R C_ ( dom R u. ran R ) | 
						
							| 4 | 2 3 | sstrdi |  |-  ( ( N e. NN /\ R e. V ) -> dom ( R ^r N ) C_ ( dom R u. ran R ) ) | 
						
							| 5 | 4 | ex |  |-  ( N e. NN -> ( R e. V -> dom ( R ^r N ) C_ ( dom R u. ran R ) ) ) | 
						
							| 6 |  | simpl |  |-  ( ( N = 0 /\ R e. V ) -> N = 0 ) | 
						
							| 7 | 6 | oveq2d |  |-  ( ( N = 0 /\ R e. V ) -> ( R ^r N ) = ( R ^r 0 ) ) | 
						
							| 8 |  | relexp0g |  |-  ( R e. V -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( N = 0 /\ R e. V ) -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) | 
						
							| 10 | 7 9 | eqtrd |  |-  ( ( N = 0 /\ R e. V ) -> ( R ^r N ) = ( _I |` ( dom R u. ran R ) ) ) | 
						
							| 11 | 10 | dmeqd |  |-  ( ( N = 0 /\ R e. V ) -> dom ( R ^r N ) = dom ( _I |` ( dom R u. ran R ) ) ) | 
						
							| 12 |  | dmresi |  |-  dom ( _I |` ( dom R u. ran R ) ) = ( dom R u. ran R ) | 
						
							| 13 | 11 12 | eqtrdi |  |-  ( ( N = 0 /\ R e. V ) -> dom ( R ^r N ) = ( dom R u. ran R ) ) | 
						
							| 14 |  | eqimss |  |-  ( dom ( R ^r N ) = ( dom R u. ran R ) -> dom ( R ^r N ) C_ ( dom R u. ran R ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( N = 0 /\ R e. V ) -> dom ( R ^r N ) C_ ( dom R u. ran R ) ) | 
						
							| 16 | 15 | ex |  |-  ( N = 0 -> ( R e. V -> dom ( R ^r N ) C_ ( dom R u. ran R ) ) ) | 
						
							| 17 | 5 16 | jaoi |  |-  ( ( N e. NN \/ N = 0 ) -> ( R e. V -> dom ( R ^r N ) C_ ( dom R u. ran R ) ) ) | 
						
							| 18 | 1 17 | sylbi |  |-  ( N e. NN0 -> ( R e. V -> dom ( R ^r N ) C_ ( dom R u. ran R ) ) ) | 
						
							| 19 | 18 | imp |  |-  ( ( N e. NN0 /\ R e. V ) -> dom ( R ^r N ) C_ ( dom R u. ran R ) ) |