Metamath Proof Explorer


Theorem relexpnndm

Description: The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020)

Ref Expression
Assertion relexpnndm N R V dom R r N dom R

Proof

Step Hyp Ref Expression
1 oveq2 n = 1 R r n = R r 1
2 1 dmeqd n = 1 dom R r n = dom R r 1
3 2 sseq1d n = 1 dom R r n dom R dom R r 1 dom R
4 3 imbi2d n = 1 R V dom R r n dom R R V dom R r 1 dom R
5 oveq2 n = m R r n = R r m
6 5 dmeqd n = m dom R r n = dom R r m
7 6 sseq1d n = m dom R r n dom R dom R r m dom R
8 7 imbi2d n = m R V dom R r n dom R R V dom R r m dom R
9 oveq2 n = m + 1 R r n = R r m + 1
10 9 dmeqd n = m + 1 dom R r n = dom R r m + 1
11 10 sseq1d n = m + 1 dom R r n dom R dom R r m + 1 dom R
12 11 imbi2d n = m + 1 R V dom R r n dom R R V dom R r m + 1 dom R
13 oveq2 n = N R r n = R r N
14 13 dmeqd n = N dom R r n = dom R r N
15 14 sseq1d n = N dom R r n dom R dom R r N dom R
16 15 imbi2d n = N R V dom R r n dom R R V dom R r N dom R
17 relexp1g R V R r 1 = R
18 17 dmeqd R V dom R r 1 = dom R
19 eqimss dom R r 1 = dom R dom R r 1 dom R
20 18 19 syl R V dom R r 1 dom R
21 relexpsucnnr R V m R r m + 1 = R r m R
22 21 ancoms m R V R r m + 1 = R r m R
23 22 dmeqd m R V dom R r m + 1 = dom R r m R
24 dmcoss dom R r m R dom R
25 23 24 eqsstrdi m R V dom R r m + 1 dom R
26 25 a1d m R V dom R r m dom R dom R r m + 1 dom R
27 26 ex m R V dom R r m dom R dom R r m + 1 dom R
28 27 a2d m R V dom R r m dom R R V dom R r m + 1 dom R
29 4 8 12 16 20 28 nnind N R V dom R r N dom R
30 29 imp N R V dom R r N dom R