Metamath Proof Explorer


Theorem reldmrelexp

Description: The domain of the repeated composition of a relation is a relation. (Contributed by AV, 12-Jul-2024)

Ref Expression
Assertion reldmrelexp Rel dom ↑𝑟

Proof

Step Hyp Ref Expression
1 df-relexp 𝑟 = ( 𝑟 ∈ V , 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) , ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) ‘ 𝑛 ) ) )
2 1 reldmmpo Rel dom ↑𝑟