Step |
Hyp |
Ref |
Expression |
1 |
|
eqidd |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑟 ∈ V , 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) , ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) ‘ 𝑛 ) ) ) = ( 𝑟 ∈ V , 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) , ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) ‘ 𝑛 ) ) ) ) |
2 |
|
simprr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑟 = 𝑅 ∧ 𝑛 = 0 ) ) → 𝑛 = 0 ) |
3 |
2
|
iftrued |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑟 = 𝑅 ∧ 𝑛 = 0 ) ) → if ( 𝑛 = 0 , ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) , ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) ‘ 𝑛 ) ) = ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) ) |
4 |
|
dmeq |
⊢ ( 𝑟 = 𝑅 → dom 𝑟 = dom 𝑅 ) |
5 |
|
rneq |
⊢ ( 𝑟 = 𝑅 → ran 𝑟 = ran 𝑅 ) |
6 |
4 5
|
uneq12d |
⊢ ( 𝑟 = 𝑅 → ( dom 𝑟 ∪ ran 𝑟 ) = ( dom 𝑅 ∪ ran 𝑅 ) ) |
7 |
6
|
reseq2d |
⊢ ( 𝑟 = 𝑅 → ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
8 |
7
|
ad2antrl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑟 = 𝑅 ∧ 𝑛 = 0 ) ) → ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
9 |
3 8
|
eqtrd |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑟 = 𝑅 ∧ 𝑛 = 0 ) ) → if ( 𝑛 = 0 , ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) , ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) ‘ 𝑛 ) ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
10 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
11 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
12 |
11
|
a1i |
⊢ ( 𝑅 ∈ 𝑉 → 0 ∈ ℕ0 ) |
13 |
|
dmexg |
⊢ ( 𝑅 ∈ 𝑉 → dom 𝑅 ∈ V ) |
14 |
|
rnexg |
⊢ ( 𝑅 ∈ 𝑉 → ran 𝑅 ∈ V ) |
15 |
|
unexg |
⊢ ( ( dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V ) → ( dom 𝑅 ∪ ran 𝑅 ) ∈ V ) |
16 |
13 14 15
|
syl2anc |
⊢ ( 𝑅 ∈ 𝑉 → ( dom 𝑅 ∪ ran 𝑅 ) ∈ V ) |
17 |
|
resiexg |
⊢ ( ( dom 𝑅 ∪ ran 𝑅 ) ∈ V → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V ) |
18 |
16 17
|
syl |
⊢ ( 𝑅 ∈ 𝑉 → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V ) |
19 |
1 9 10 12 18
|
ovmpod |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ( 𝑟 ∈ V , 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) , ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) ‘ 𝑛 ) ) ) 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
20 |
|
df-relexp |
⊢ ↑𝑟 = ( 𝑟 ∈ V , 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) , ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) ‘ 𝑛 ) ) ) |
21 |
|
oveq |
⊢ ( ↑𝑟 = ( 𝑟 ∈ V , 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) , ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) ‘ 𝑛 ) ) ) → ( 𝑅 ↑𝑟 0 ) = ( 𝑅 ( 𝑟 ∈ V , 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) , ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) ‘ 𝑛 ) ) ) 0 ) ) |
22 |
21
|
eqeq1d |
⊢ ( ↑𝑟 = ( 𝑟 ∈ V , 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) , ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) ‘ 𝑛 ) ) ) → ( ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ↔ ( 𝑅 ( 𝑟 ∈ V , 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) , ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) ‘ 𝑛 ) ) ) 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) |
23 |
22
|
imbi2d |
⊢ ( ↑𝑟 = ( 𝑟 ∈ V , 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) , ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) ‘ 𝑛 ) ) ) → ( ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ↔ ( 𝑅 ∈ 𝑉 → ( 𝑅 ( 𝑟 ∈ V , 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) , ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) ‘ 𝑛 ) ) ) 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) ) |
24 |
20 23
|
ax-mp |
⊢ ( ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ↔ ( 𝑅 ∈ 𝑉 → ( 𝑅 ( 𝑟 ∈ V , 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( I ↾ ( dom 𝑟 ∪ ran 𝑟 ) ) , ( seq 1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ∘ 𝑟 ) ) , ( 𝑧 ∈ V ↦ 𝑟 ) ) ‘ 𝑛 ) ) ) 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) |
25 |
19 24
|
mpbir |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |