Description: The exponentiation of a relation is a relation. (Contributed by RP, 23-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | relexprel | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ Rel 𝑅 ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 | ⊢ ( Rel 𝑅 → ( 𝑁 = 1 → Rel 𝑅 ) ) | |
2 | relexprelg | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ ( 𝑁 = 1 → Rel 𝑅 ) ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) | |
3 | 1 2 | syl3an3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ Rel 𝑅 ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) |