Metamath Proof Explorer


Theorem relexprel

Description: The exponentiation of a relation is a relation. (Contributed by RP, 23-May-2020)

Ref Expression
Assertion relexprel ( ( 𝑁 ∈ ℕ0𝑅𝑉 ∧ Rel 𝑅 ) → Rel ( 𝑅𝑟 𝑁 ) )

Proof

Step Hyp Ref Expression
1 ax-1 ( Rel 𝑅 → ( 𝑁 = 1 → Rel 𝑅 ) )
2 relexprelg ( ( 𝑁 ∈ ℕ0𝑅𝑉 ∧ ( 𝑁 = 1 → Rel 𝑅 ) ) → Rel ( 𝑅𝑟 𝑁 ) )
3 1 2 syl3an3 ( ( 𝑁 ∈ ℕ0𝑅𝑉 ∧ Rel 𝑅 ) → Rel ( 𝑅𝑟 𝑁 ) )