Description: The exponentiation of a relation is a relation. (Contributed by RP, 23-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relexprel | |- ( ( N e. NN0 /\ R e. V /\ Rel R ) -> Rel ( R ^r N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 | |- ( Rel R -> ( N = 1 -> Rel R ) ) |
|
| 2 | relexprelg | |- ( ( N e. NN0 /\ R e. V /\ ( N = 1 -> Rel R ) ) -> Rel ( R ^r N ) ) |
|
| 3 | 1 2 | syl3an3 | |- ( ( N e. NN0 /\ R e. V /\ Rel R ) -> Rel ( R ^r N ) ) |