| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relexpreld.1 |
|- ( ph -> Rel R ) |
| 2 |
|
relexpreld.2 |
|- ( ph -> N e. NN0 ) |
| 3 |
2
|
adantr |
|- ( ( ph /\ R e. _V ) -> N e. NN0 ) |
| 4 |
|
simpr |
|- ( ( ph /\ R e. _V ) -> R e. _V ) |
| 5 |
1
|
adantr |
|- ( ( ph /\ R e. _V ) -> Rel R ) |
| 6 |
|
relexprel |
|- ( ( N e. NN0 /\ R e. _V /\ Rel R ) -> Rel ( R ^r N ) ) |
| 7 |
3 4 5 6
|
syl3anc |
|- ( ( ph /\ R e. _V ) -> Rel ( R ^r N ) ) |
| 8 |
7
|
ex |
|- ( ph -> ( R e. _V -> Rel ( R ^r N ) ) ) |
| 9 |
|
rel0 |
|- Rel (/) |
| 10 |
|
reldmrelexp |
|- Rel dom ^r |
| 11 |
10
|
ovprc1 |
|- ( -. R e. _V -> ( R ^r N ) = (/) ) |
| 12 |
11
|
releqd |
|- ( -. R e. _V -> ( Rel ( R ^r N ) <-> Rel (/) ) ) |
| 13 |
9 12
|
mpbiri |
|- ( -. R e. _V -> Rel ( R ^r N ) ) |
| 14 |
8 13
|
pm2.61d1 |
|- ( ph -> Rel ( R ^r N ) ) |