Step |
Hyp |
Ref |
Expression |
1 |
|
relexpreld.1 |
|- ( ph -> Rel R ) |
2 |
|
relexpreld.2 |
|- ( ph -> N e. NN0 ) |
3 |
2
|
adantr |
|- ( ( ph /\ R e. _V ) -> N e. NN0 ) |
4 |
|
simpr |
|- ( ( ph /\ R e. _V ) -> R e. _V ) |
5 |
1
|
adantr |
|- ( ( ph /\ R e. _V ) -> Rel R ) |
6 |
|
relexprel |
|- ( ( N e. NN0 /\ R e. _V /\ Rel R ) -> Rel ( R ^r N ) ) |
7 |
3 4 5 6
|
syl3anc |
|- ( ( ph /\ R e. _V ) -> Rel ( R ^r N ) ) |
8 |
7
|
ex |
|- ( ph -> ( R e. _V -> Rel ( R ^r N ) ) ) |
9 |
|
rel0 |
|- Rel (/) |
10 |
|
reldmrelexp |
|- Rel dom ^r |
11 |
10
|
ovprc1 |
|- ( -. R e. _V -> ( R ^r N ) = (/) ) |
12 |
11
|
releqd |
|- ( -. R e. _V -> ( Rel ( R ^r N ) <-> Rel (/) ) ) |
13 |
9 12
|
mpbiri |
|- ( -. R e. _V -> Rel ( R ^r N ) ) |
14 |
8 13
|
pm2.61d1 |
|- ( ph -> Rel ( R ^r N ) ) |