Description: The exponentiation of a class to zero is a relation. (Contributed by RP, 23-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | relexp0rel | |- ( R e. V -> Rel ( R ^r 0 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres | |- Rel ( _I |` ( dom R u. ran R ) ) |
|
2 | relexp0g | |- ( R e. V -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
|
3 | 2 | releqd | |- ( R e. V -> ( Rel ( R ^r 0 ) <-> Rel ( _I |` ( dom R u. ran R ) ) ) ) |
4 | 1 3 | mpbiri | |- ( R e. V -> Rel ( R ^r 0 ) ) |