| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
|
oveq2 |
|
| 3 |
2
|
oveq2d |
|
| 4 |
1 3
|
eqeq12d |
|
| 5 |
4
|
imbi2d |
|
| 6 |
|
oveq2 |
|
| 7 |
|
oveq2 |
|
| 8 |
7
|
oveq2d |
|
| 9 |
6 8
|
eqeq12d |
|
| 10 |
9
|
imbi2d |
|
| 11 |
|
oveq2 |
|
| 12 |
|
oveq2 |
|
| 13 |
12
|
oveq2d |
|
| 14 |
11 13
|
eqeq12d |
|
| 15 |
14
|
imbi2d |
|
| 16 |
|
oveq2 |
|
| 17 |
|
oveq2 |
|
| 18 |
17
|
oveq2d |
|
| 19 |
16 18
|
eqeq12d |
|
| 20 |
19
|
imbi2d |
|
| 21 |
|
ovexd |
|
| 22 |
21
|
relexp1d |
|
| 23 |
|
simp1 |
|
| 24 |
|
nnre |
|
| 25 |
|
ax-1rid |
|
| 26 |
23 24 25
|
3syl |
|
| 27 |
26
|
eqcomd |
|
| 28 |
27
|
oveq2d |
|
| 29 |
22 28
|
eqtrd |
|
| 30 |
|
ovex |
|
| 31 |
|
simp1 |
|
| 32 |
|
relexpsucnnr |
|
| 33 |
30 31 32
|
sylancr |
|
| 34 |
|
simp3 |
|
| 35 |
34
|
coeq1d |
|
| 36 |
|
simp21 |
|
| 37 |
36 31
|
nnmulcld |
|
| 38 |
|
simp22 |
|
| 39 |
|
relexpaddnn |
|
| 40 |
37 36 38 39
|
syl3anc |
|
| 41 |
35 40
|
eqtrd |
|
| 42 |
36
|
nncnd |
|
| 43 |
31
|
nncnd |
|
| 44 |
|
1cnd |
|
| 45 |
42 43 44
|
adddid |
|
| 46 |
42
|
mulridd |
|
| 47 |
46
|
oveq2d |
|
| 48 |
45 47
|
eqtr2d |
|
| 49 |
48
|
oveq2d |
|
| 50 |
41 49
|
eqtrd |
|
| 51 |
33 50
|
eqtrd |
|
| 52 |
51
|
3exp |
|
| 53 |
52
|
a2d |
|
| 54 |
5 10 15 20 29 53
|
nnind |
|
| 55 |
54
|
3expd |
|
| 56 |
55
|
impcom |
|
| 57 |
56
|
impd |
|
| 58 |
57
|
impcom |
|
| 59 |
|
simplr |
|
| 60 |
59
|
eqcomd |
|
| 61 |
60
|
oveq2d |
|
| 62 |
58 61
|
eqtrd |
|