Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
|
oveq2 |
|
3 |
2
|
oveq2d |
|
4 |
1 3
|
eqeq12d |
|
5 |
4
|
imbi2d |
|
6 |
|
oveq2 |
|
7 |
|
oveq2 |
|
8 |
7
|
oveq2d |
|
9 |
6 8
|
eqeq12d |
|
10 |
9
|
imbi2d |
|
11 |
|
oveq2 |
|
12 |
|
oveq2 |
|
13 |
12
|
oveq2d |
|
14 |
11 13
|
eqeq12d |
|
15 |
14
|
imbi2d |
|
16 |
|
oveq2 |
|
17 |
|
oveq2 |
|
18 |
17
|
oveq2d |
|
19 |
16 18
|
eqeq12d |
|
20 |
19
|
imbi2d |
|
21 |
|
ovexd |
|
22 |
21
|
relexp1d |
|
23 |
|
simp1 |
|
24 |
|
nnre |
|
25 |
|
ax-1rid |
|
26 |
23 24 25
|
3syl |
|
27 |
26
|
eqcomd |
|
28 |
27
|
oveq2d |
|
29 |
22 28
|
eqtrd |
|
30 |
|
ovex |
|
31 |
|
simp1 |
|
32 |
|
relexpsucnnr |
|
33 |
30 31 32
|
sylancr |
|
34 |
|
simp3 |
|
35 |
34
|
coeq1d |
|
36 |
|
simp21 |
|
37 |
36 31
|
nnmulcld |
|
38 |
|
simp22 |
|
39 |
|
relexpaddnn |
|
40 |
37 36 38 39
|
syl3anc |
|
41 |
35 40
|
eqtrd |
|
42 |
36
|
nncnd |
|
43 |
31
|
nncnd |
|
44 |
|
1cnd |
|
45 |
42 43 44
|
adddid |
|
46 |
42
|
mulid1d |
|
47 |
46
|
oveq2d |
|
48 |
45 47
|
eqtr2d |
|
49 |
48
|
oveq2d |
|
50 |
41 49
|
eqtrd |
|
51 |
33 50
|
eqtrd |
|
52 |
51
|
3exp |
|
53 |
52
|
a2d |
|
54 |
5 10 15 20 29 53
|
nnind |
|
55 |
54
|
3expd |
|
56 |
55
|
impcom |
|
57 |
56
|
impd |
|
58 |
57
|
impcom |
|
59 |
|
simplr |
|
60 |
59
|
eqcomd |
|
61 |
60
|
oveq2d |
|
62 |
58 61
|
eqtrd |
|