Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|
2 |
|
elnn0 |
|
3 |
|
relexpmulnn |
|
4 |
3
|
3adantl3 |
|
5 |
4
|
expcom |
|
6 |
5
|
expcom |
|
7 |
|
simprr |
|
8 |
|
simpll |
|
9 |
8
|
oveq2d |
|
10 |
|
simplr |
|
11 |
10
|
nncnd |
|
12 |
11
|
mul01d |
|
13 |
7 9 12
|
3eqtrd |
|
14 |
|
simpl |
|
15 |
|
nnnle0 |
|
16 |
15
|
adantl |
|
17 |
|
simpl |
|
18 |
17
|
breq2d |
|
19 |
16 18
|
mtbird |
|
20 |
14 19
|
syl |
|
21 |
13 20
|
jcnd |
|
22 |
21
|
pm2.21d |
|
23 |
22
|
exp32 |
|
24 |
23
|
3impd |
|
25 |
24
|
ex |
|
26 |
6 25
|
jaoi |
|
27 |
2 26
|
sylbi |
|
28 |
|
simplr |
|
29 |
28
|
oveq2d |
|
30 |
|
simpr1 |
|
31 |
|
relexp0g |
|
32 |
30 31
|
syl |
|
33 |
29 32
|
eqtrd |
|
34 |
33
|
oveq1d |
|
35 |
|
dmexg |
|
36 |
|
rnexg |
|
37 |
35 36
|
unexd |
|
38 |
30 37
|
syl |
|
39 |
|
simpll |
|
40 |
|
relexpiidm |
|
41 |
38 39 40
|
syl2anc |
|
42 |
|
simpr2 |
|
43 |
28
|
oveq1d |
|
44 |
39
|
nn0cnd |
|
45 |
44
|
mul02d |
|
46 |
42 43 45
|
3eqtrd |
|
47 |
46
|
oveq2d |
|
48 |
47 32
|
eqtr2d |
|
49 |
34 41 48
|
3eqtrd |
|
50 |
49
|
ex |
|
51 |
50
|
ex |
|
52 |
27 51
|
jaod |
|
53 |
1 52
|
biimtrid |
|
54 |
53
|
impcom |
|
55 |
54
|
impcom |
|