Description: With ordered exponents, the composition of powers of a relation is the relation raised to the product of exponents. (Contributed by RP, 13-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | relexpmulg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 | |
|
2 | elnn0 | |
|
3 | relexpmulnn | |
|
4 | 3 | 3adantl3 | |
5 | 4 | expcom | |
6 | 5 | expcom | |
7 | simprr | |
|
8 | simpll | |
|
9 | 8 | oveq2d | |
10 | simplr | |
|
11 | 10 | nncnd | |
12 | 11 | mul01d | |
13 | 7 9 12 | 3eqtrd | |
14 | simpl | |
|
15 | nnnle0 | |
|
16 | 15 | adantl | |
17 | simpl | |
|
18 | 17 | breq2d | |
19 | 16 18 | mtbird | |
20 | 14 19 | syl | |
21 | 13 20 | jcnd | |
22 | 21 | pm2.21d | |
23 | 22 | exp32 | |
24 | 23 | 3impd | |
25 | 24 | ex | |
26 | 6 25 | jaoi | |
27 | 2 26 | sylbi | |
28 | simplr | |
|
29 | 28 | oveq2d | |
30 | simpr1 | |
|
31 | relexp0g | |
|
32 | 30 31 | syl | |
33 | 29 32 | eqtrd | |
34 | 33 | oveq1d | |
35 | dmexg | |
|
36 | rnexg | |
|
37 | 35 36 | unexd | |
38 | 30 37 | syl | |
39 | simpll | |
|
40 | relexpiidm | |
|
41 | 38 39 40 | syl2anc | |
42 | simpr2 | |
|
43 | 28 | oveq1d | |
44 | 39 | nn0cnd | |
45 | 44 | mul02d | |
46 | 42 43 45 | 3eqtrd | |
47 | 46 | oveq2d | |
48 | 47 32 | eqtr2d | |
49 | 34 41 48 | 3eqtrd | |
50 | 49 | ex | |
51 | 50 | ex | |
52 | 27 51 | jaod | |
53 | 1 52 | biimtrid | |
54 | 53 | impcom | |
55 | 54 | impcom | |