Metamath Proof Explorer


Theorem relexpmulg

Description: With ordered exponents, the composition of powers of a relation is the relation raised to the product of exponents. (Contributed by RP, 13-Jun-2020)

Ref Expression
Assertion relexpmulg R V I = J K I = 0 J K J 0 K 0 R r J r K = R r I

Proof

Step Hyp Ref Expression
1 elnn0 J 0 J J = 0
2 elnn0 K 0 K K = 0
3 relexpmulnn R V I = J K J K R r J r K = R r I
4 3 3adantl3 R V I = J K I = 0 J K J K R r J r K = R r I
5 4 expcom J K R V I = J K I = 0 J K R r J r K = R r I
6 5 expcom K J R V I = J K I = 0 J K R r J r K = R r I
7 simprr K = 0 J R V I = J K I = J K
8 simpll K = 0 J R V I = J K K = 0
9 8 oveq2d K = 0 J R V I = J K J K = J 0
10 simplr K = 0 J R V I = J K J
11 10 nncnd K = 0 J R V I = J K J
12 11 mul01d K = 0 J R V I = J K J 0 = 0
13 7 9 12 3eqtrd K = 0 J R V I = J K I = 0
14 simpl K = 0 J R V I = J K K = 0 J
15 nnnle0 J ¬ J 0
16 15 adantl K = 0 J ¬ J 0
17 simpl K = 0 J K = 0
18 17 breq2d K = 0 J J K J 0
19 16 18 mtbird K = 0 J ¬ J K
20 14 19 syl K = 0 J R V I = J K ¬ J K
21 13 20 jcnd K = 0 J R V I = J K ¬ I = 0 J K
22 21 pm2.21d K = 0 J R V I = J K I = 0 J K R r J r K = R r I
23 22 exp32 K = 0 J R V I = J K I = 0 J K R r J r K = R r I
24 23 3impd K = 0 J R V I = J K I = 0 J K R r J r K = R r I
25 24 ex K = 0 J R V I = J K I = 0 J K R r J r K = R r I
26 6 25 jaoi K K = 0 J R V I = J K I = 0 J K R r J r K = R r I
27 2 26 sylbi K 0 J R V I = J K I = 0 J K R r J r K = R r I
28 simplr K 0 J = 0 R V I = J K I = 0 J K J = 0
29 28 oveq2d K 0 J = 0 R V I = J K I = 0 J K R r J = R r 0
30 simpr1 K 0 J = 0 R V I = J K I = 0 J K R V
31 relexp0g R V R r 0 = I dom R ran R
32 30 31 syl K 0 J = 0 R V I = J K I = 0 J K R r 0 = I dom R ran R
33 29 32 eqtrd K 0 J = 0 R V I = J K I = 0 J K R r J = I dom R ran R
34 33 oveq1d K 0 J = 0 R V I = J K I = 0 J K R r J r K = I dom R ran R r K
35 dmexg R V dom R V
36 rnexg R V ran R V
37 35 36 unexd R V dom R ran R V
38 30 37 syl K 0 J = 0 R V I = J K I = 0 J K dom R ran R V
39 simpll K 0 J = 0 R V I = J K I = 0 J K K 0
40 relexpiidm dom R ran R V K 0 I dom R ran R r K = I dom R ran R
41 38 39 40 syl2anc K 0 J = 0 R V I = J K I = 0 J K I dom R ran R r K = I dom R ran R
42 simpr2 K 0 J = 0 R V I = J K I = 0 J K I = J K
43 28 oveq1d K 0 J = 0 R V I = J K I = 0 J K J K = 0 K
44 39 nn0cnd K 0 J = 0 R V I = J K I = 0 J K K
45 44 mul02d K 0 J = 0 R V I = J K I = 0 J K 0 K = 0
46 42 43 45 3eqtrd K 0 J = 0 R V I = J K I = 0 J K I = 0
47 46 oveq2d K 0 J = 0 R V I = J K I = 0 J K R r I = R r 0
48 47 32 eqtr2d K 0 J = 0 R V I = J K I = 0 J K I dom R ran R = R r I
49 34 41 48 3eqtrd K 0 J = 0 R V I = J K I = 0 J K R r J r K = R r I
50 49 ex K 0 J = 0 R V I = J K I = 0 J K R r J r K = R r I
51 50 ex K 0 J = 0 R V I = J K I = 0 J K R r J r K = R r I
52 27 51 jaod K 0 J J = 0 R V I = J K I = 0 J K R r J r K = R r I
53 1 52 biimtrid K 0 J 0 R V I = J K I = 0 J K R r J r K = R r I
54 53 impcom J 0 K 0 R V I = J K I = 0 J K R r J r K = R r I
55 54 impcom R V I = J K I = 0 J K J 0 K 0 R r J r K = R r I