| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
iuneq2d |
|
| 3 |
|
oveq2 |
|
| 4 |
2 3
|
sseq12d |
|
| 5 |
|
oveq2 |
|
| 6 |
5
|
iuneq2d |
|
| 7 |
|
oveq2 |
|
| 8 |
6 7
|
sseq12d |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
iuneq2d |
|
| 11 |
|
oveq2 |
|
| 12 |
10 11
|
sseq12d |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
iuneq2d |
|
| 15 |
|
oveq2 |
|
| 16 |
14 15
|
sseq12d |
|
| 17 |
|
oveq2 |
|
| 18 |
17
|
cbviunv |
|
| 19 |
|
oveq2 |
|
| 20 |
19
|
cbviunv |
|
| 21 |
18 20
|
eqtri |
|
| 22 |
|
ovex |
|
| 23 |
|
relexp1g |
|
| 24 |
22 23
|
mp1i |
|
| 25 |
24
|
iuneq2i |
|
| 26 |
|
nnex |
|
| 27 |
|
ovex |
|
| 28 |
26 27
|
iunex |
|
| 29 |
|
relexp1g |
|
| 30 |
28 29
|
ax-mp |
|
| 31 |
21 25 30
|
3eqtr4i |
|
| 32 |
31
|
eqimssi |
|
| 33 |
|
oveq2 |
|
| 34 |
33
|
oveq1d |
|
| 35 |
34 33
|
coeq12d |
|
| 36 |
35
|
cbviunv |
|
| 37 |
|
ss2iun |
|
| 38 |
34
|
ssiun2s |
|
| 39 |
|
coss1 |
|
| 40 |
38 39
|
syl |
|
| 41 |
37 40
|
mprg |
|
| 42 |
36 41
|
eqsstri |
|
| 43 |
|
coss1 |
|
| 44 |
43
|
ralrimivw |
|
| 45 |
|
ss2iun |
|
| 46 |
44 45
|
syl |
|
| 47 |
42 46
|
sstrid |
|
| 48 |
47
|
adantl |
|
| 49 |
|
relexpsucnnr |
|
| 50 |
22 49
|
mpan |
|
| 51 |
50
|
iuneq2d |
|
| 52 |
51
|
adantr |
|
| 53 |
|
relexpsucnnr |
|
| 54 |
28 53
|
mpan |
|
| 55 |
|
oveq2 |
|
| 56 |
55
|
cbviunv |
|
| 57 |
56
|
coeq2i |
|
| 58 |
|
coiun |
|
| 59 |
57 58
|
eqtri |
|
| 60 |
54 59
|
eqtrdi |
|
| 61 |
60
|
adantr |
|
| 62 |
48 52 61
|
3sstr4d |
|
| 63 |
62
|
ex |
|
| 64 |
4 8 12 16 32 63
|
nnind |
|