Description: The union of relational powers to positive multiples of N is a subset to the transitive closure raised to the power of N . (Contributed by RP, 15-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | trclrelexplem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | iuneq2d | |
3 | oveq2 | |
|
4 | 2 3 | sseq12d | |
5 | oveq2 | |
|
6 | 5 | iuneq2d | |
7 | oveq2 | |
|
8 | 6 7 | sseq12d | |
9 | oveq2 | |
|
10 | 9 | iuneq2d | |
11 | oveq2 | |
|
12 | 10 11 | sseq12d | |
13 | oveq2 | |
|
14 | 13 | iuneq2d | |
15 | oveq2 | |
|
16 | 14 15 | sseq12d | |
17 | oveq2 | |
|
18 | 17 | cbviunv | |
19 | oveq2 | |
|
20 | 19 | cbviunv | |
21 | 18 20 | eqtri | |
22 | ovex | |
|
23 | relexp1g | |
|
24 | 22 23 | mp1i | |
25 | 24 | iuneq2i | |
26 | nnex | |
|
27 | ovex | |
|
28 | 26 27 | iunex | |
29 | relexp1g | |
|
30 | 28 29 | ax-mp | |
31 | 21 25 30 | 3eqtr4i | |
32 | 31 | eqimssi | |
33 | oveq2 | |
|
34 | 33 | oveq1d | |
35 | 34 33 | coeq12d | |
36 | 35 | cbviunv | |
37 | ss2iun | |
|
38 | 34 | ssiun2s | |
39 | coss1 | |
|
40 | 38 39 | syl | |
41 | 37 40 | mprg | |
42 | 36 41 | eqsstri | |
43 | coss1 | |
|
44 | 43 | ralrimivw | |
45 | ss2iun | |
|
46 | 44 45 | syl | |
47 | 42 46 | sstrid | |
48 | 47 | adantl | |
49 | relexpsucnnr | |
|
50 | 22 49 | mpan | |
51 | 50 | iuneq2d | |
52 | 51 | adantr | |
53 | relexpsucnnr | |
|
54 | 28 53 | mpan | |
55 | oveq2 | |
|
56 | 55 | cbviunv | |
57 | 56 | coeq2i | |
58 | coiun | |
|
59 | 57 58 | eqtri | |
60 | 54 59 | eqtrdi | |
61 | 60 | adantr | |
62 | 48 52 61 | 3sstr4d | |
63 | 62 | ex | |
64 | 4 8 12 16 32 63 | nnind | |