Metamath Proof Explorer


Theorem trclrelexplem

Description: The union of relational powers to positive multiples of N is a subset to the transitive closure raised to the power of N . (Contributed by RP, 15-Jun-2020)

Ref Expression
Assertion trclrelexplem NkDrkrNjDrjrN

Proof

Step Hyp Ref Expression
1 oveq2 x=1Drkrx=Drkr1
2 1 iuneq2d x=1kDrkrx=kDrkr1
3 oveq2 x=1jDrjrx=jDrjr1
4 2 3 sseq12d x=1kDrkrxjDrjrxkDrkr1jDrjr1
5 oveq2 x=yDrkrx=Drkry
6 5 iuneq2d x=ykDrkrx=kDrkry
7 oveq2 x=yjDrjrx=jDrjry
8 6 7 sseq12d x=ykDrkrxjDrjrxkDrkryjDrjry
9 oveq2 x=y+1Drkrx=Drkry+1
10 9 iuneq2d x=y+1kDrkrx=kDrkry+1
11 oveq2 x=y+1jDrjrx=jDrjry+1
12 10 11 sseq12d x=y+1kDrkrxjDrjrxkDrkry+1jDrjry+1
13 oveq2 x=NDrkrx=DrkrN
14 13 iuneq2d x=NkDrkrx=kDrkrN
15 oveq2 x=NjDrjrx=jDrjrN
16 14 15 sseq12d x=NkDrkrxjDrjrxkDrkrNjDrjrN
17 oveq2 k=lDrk=Drl
18 17 cbviunv kDrk=lDrl
19 oveq2 l=jDrl=Drj
20 19 cbviunv lDrl=jDrj
21 18 20 eqtri kDrk=jDrj
22 ovex DrkV
23 relexp1g DrkVDrkr1=Drk
24 22 23 mp1i kDrkr1=Drk
25 24 iuneq2i kDrkr1=kDrk
26 nnex V
27 ovex DrjV
28 26 27 iunex jDrjV
29 relexp1g jDrjVjDrjr1=jDrj
30 28 29 ax-mp jDrjr1=jDrj
31 21 25 30 3eqtr4i kDrkr1=jDrjr1
32 31 eqimssi kDrkr1jDrjr1
33 oveq2 k=mDrk=Drm
34 33 oveq1d k=mDrkry=Drmry
35 34 33 coeq12d k=mDrkryDrk=DrmryDrm
36 35 cbviunv kDrkryDrk=mDrmryDrm
37 ss2iun mDrmryDrmkDrkryDrmmDrmryDrmmkDrkryDrm
38 34 ssiun2s mDrmrykDrkry
39 coss1 DrmrykDrkryDrmryDrmkDrkryDrm
40 38 39 syl mDrmryDrmkDrkryDrm
41 37 40 mprg mDrmryDrmmkDrkryDrm
42 36 41 eqsstri kDrkryDrkmkDrkryDrm
43 coss1 kDrkryjDrjrykDrkryDrmjDrjryDrm
44 43 ralrimivw kDrkryjDrjrymkDrkryDrmjDrjryDrm
45 ss2iun mkDrkryDrmjDrjryDrmmkDrkryDrmmjDrjryDrm
46 44 45 syl kDrkryjDrjrymkDrkryDrmmjDrjryDrm
47 42 46 sstrid kDrkryjDrjrykDrkryDrkmjDrjryDrm
48 47 adantl ykDrkryjDrjrykDrkryDrkmjDrjryDrm
49 relexpsucnnr DrkVyDrkry+1=DrkryDrk
50 22 49 mpan yDrkry+1=DrkryDrk
51 50 iuneq2d ykDrkry+1=kDrkryDrk
52 51 adantr ykDrkryjDrjrykDrkry+1=kDrkryDrk
53 relexpsucnnr jDrjVyjDrjry+1=jDrjryjDrj
54 28 53 mpan yjDrjry+1=jDrjryjDrj
55 oveq2 j=mDrj=Drm
56 55 cbviunv jDrj=mDrm
57 56 coeq2i jDrjryjDrj=jDrjrymDrm
58 coiun jDrjrymDrm=mjDrjryDrm
59 57 58 eqtri jDrjryjDrj=mjDrjryDrm
60 54 59 eqtrdi yjDrjry+1=mjDrjryDrm
61 60 adantr ykDrkryjDrjryjDrjry+1=mjDrjryDrm
62 48 52 61 3sstr4d ykDrkryjDrjrykDrkry+1jDrjry+1
63 62 ex ykDrkryjDrjrykDrkry+1jDrjry+1
64 4 8 12 16 32 63 nnind NkDrkrNjDrjrN