Metamath Proof Explorer


Theorem trclrelexplem

Description: The union of relational powers to positive multiples of N is a subset to the transitive closure raised to the power of N . (Contributed by RP, 15-Jun-2020)

Ref Expression
Assertion trclrelexplem ( 𝑁 ∈ ℕ → 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑁 ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑁 ) )

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝑥 = 1 → ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑥 ) = ( ( 𝐷𝑟 𝑘 ) ↑𝑟 1 ) )
2 1 iuneq2d ( 𝑥 = 1 → 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑥 ) = 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 1 ) )
3 oveq2 ( 𝑥 = 1 → ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑥 ) = ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 1 ) )
4 2 3 sseq12d ( 𝑥 = 1 → ( 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑥 ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑥 ) ↔ 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 1 ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 1 ) ) )
5 oveq2 ( 𝑥 = 𝑦 → ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑥 ) = ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) )
6 5 iuneq2d ( 𝑥 = 𝑦 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑥 ) = 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) )
7 oveq2 ( 𝑥 = 𝑦 → ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑥 ) = ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) )
8 6 7 sseq12d ( 𝑥 = 𝑦 → ( 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑥 ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑥 ) ↔ 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ) )
9 oveq2 ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑥 ) = ( ( 𝐷𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) )
10 9 iuneq2d ( 𝑥 = ( 𝑦 + 1 ) → 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑥 ) = 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) )
11 oveq2 ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑥 ) = ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) )
12 10 11 sseq12d ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑥 ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑥 ) ↔ 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) ) )
13 oveq2 ( 𝑥 = 𝑁 → ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑥 ) = ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑁 ) )
14 13 iuneq2d ( 𝑥 = 𝑁 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑥 ) = 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑁 ) )
15 oveq2 ( 𝑥 = 𝑁 → ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑥 ) = ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑁 ) )
16 14 15 sseq12d ( 𝑥 = 𝑁 → ( 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑥 ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑥 ) ↔ 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑁 ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑁 ) ) )
17 oveq2 ( 𝑘 = 𝑙 → ( 𝐷𝑟 𝑘 ) = ( 𝐷𝑟 𝑙 ) )
18 17 cbviunv 𝑘 ∈ ℕ ( 𝐷𝑟 𝑘 ) = 𝑙 ∈ ℕ ( 𝐷𝑟 𝑙 )
19 oveq2 ( 𝑙 = 𝑗 → ( 𝐷𝑟 𝑙 ) = ( 𝐷𝑟 𝑗 ) )
20 19 cbviunv 𝑙 ∈ ℕ ( 𝐷𝑟 𝑙 ) = 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 )
21 18 20 eqtri 𝑘 ∈ ℕ ( 𝐷𝑟 𝑘 ) = 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 )
22 ovex ( 𝐷𝑟 𝑘 ) ∈ V
23 relexp1g ( ( 𝐷𝑟 𝑘 ) ∈ V → ( ( 𝐷𝑟 𝑘 ) ↑𝑟 1 ) = ( 𝐷𝑟 𝑘 ) )
24 22 23 mp1i ( 𝑘 ∈ ℕ → ( ( 𝐷𝑟 𝑘 ) ↑𝑟 1 ) = ( 𝐷𝑟 𝑘 ) )
25 24 iuneq2i 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 1 ) = 𝑘 ∈ ℕ ( 𝐷𝑟 𝑘 )
26 nnex ℕ ∈ V
27 ovex ( 𝐷𝑟 𝑗 ) ∈ V
28 26 27 iunex 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ∈ V
29 relexp1g ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ∈ V → ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 1 ) = 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) )
30 28 29 ax-mp ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 1 ) = 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 )
31 21 25 30 3eqtr4i 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 1 ) = ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 1 )
32 31 eqimssi 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 1 ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 1 )
33 oveq2 ( 𝑘 = 𝑚 → ( 𝐷𝑟 𝑘 ) = ( 𝐷𝑟 𝑚 ) )
34 33 oveq1d ( 𝑘 = 𝑚 → ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) = ( ( 𝐷𝑟 𝑚 ) ↑𝑟 𝑦 ) )
35 34 33 coeq12d ( 𝑘 = 𝑚 → ( ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑘 ) ) = ( ( ( 𝐷𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) )
36 35 cbviunv 𝑘 ∈ ℕ ( ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑘 ) ) = 𝑚 ∈ ℕ ( ( ( 𝐷𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) )
37 ss2iun ( ∀ 𝑚 ∈ ℕ ( ( ( 𝐷𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) ⊆ ( 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) → 𝑚 ∈ ℕ ( ( ( 𝐷𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) ⊆ 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) )
38 34 ssiun2s ( 𝑚 ∈ ℕ → ( ( 𝐷𝑟 𝑚 ) ↑𝑟 𝑦 ) ⊆ 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) )
39 coss1 ( ( ( 𝐷𝑟 𝑚 ) ↑𝑟 𝑦 ) ⊆ 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) → ( ( ( 𝐷𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) ⊆ ( 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) )
40 38 39 syl ( 𝑚 ∈ ℕ → ( ( ( 𝐷𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) ⊆ ( 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) )
41 37 40 mprg 𝑚 ∈ ℕ ( ( ( 𝐷𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) ⊆ 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) )
42 36 41 eqsstri 𝑘 ∈ ℕ ( ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑘 ) ) ⊆ 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) )
43 coss1 ( 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) → ( 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) ⊆ ( ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) )
44 43 ralrimivw ( 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) → ∀ 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) ⊆ ( ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) )
45 ss2iun ( ∀ 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) ⊆ ( ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) → 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) ⊆ 𝑚 ∈ ℕ ( ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) )
46 44 45 syl ( 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) → 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) ⊆ 𝑚 ∈ ℕ ( ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) )
47 42 46 sstrid ( 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) → 𝑘 ∈ ℕ ( ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑘 ) ) ⊆ 𝑚 ∈ ℕ ( ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) )
48 47 adantl ( ( 𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ) → 𝑘 ∈ ℕ ( ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑘 ) ) ⊆ 𝑚 ∈ ℕ ( ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) )
49 relexpsucnnr ( ( ( 𝐷𝑟 𝑘 ) ∈ V ∧ 𝑦 ∈ ℕ ) → ( ( 𝐷𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑘 ) ) )
50 22 49 mpan ( 𝑦 ∈ ℕ → ( ( 𝐷𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑘 ) ) )
51 50 iuneq2d ( 𝑦 ∈ ℕ → 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) = 𝑘 ∈ ℕ ( ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑘 ) ) )
52 51 adantr ( ( 𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ) → 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) = 𝑘 ∈ ℕ ( ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑘 ) ) )
53 relexpsucnnr ( ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ∈ V ∧ 𝑦 ∈ ℕ ) → ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ) )
54 28 53 mpan ( 𝑦 ∈ ℕ → ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ) )
55 oveq2 ( 𝑗 = 𝑚 → ( 𝐷𝑟 𝑗 ) = ( 𝐷𝑟 𝑚 ) )
56 55 cbviunv 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) = 𝑚 ∈ ℕ ( 𝐷𝑟 𝑚 )
57 56 coeq2i ( ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ) = ( ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ 𝑚 ∈ ℕ ( 𝐷𝑟 𝑚 ) )
58 coiun ( ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ 𝑚 ∈ ℕ ( 𝐷𝑟 𝑚 ) ) = 𝑚 ∈ ℕ ( ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) )
59 57 58 eqtri ( ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ) = 𝑚 ∈ ℕ ( ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) )
60 54 59 eqtrdi ( 𝑦 ∈ ℕ → ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) = 𝑚 ∈ ℕ ( ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) )
61 60 adantr ( ( 𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ) → ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) = 𝑚 ∈ ℕ ( ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷𝑟 𝑚 ) ) )
62 48 52 61 3sstr4d ( ( 𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) ) → 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) )
63 62 ex ( 𝑦 ∈ ℕ → ( 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑦 ) → 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) ) )
64 4 8 12 16 32 63 nnind ( 𝑁 ∈ ℕ → 𝑘 ∈ ℕ ( ( 𝐷𝑟 𝑘 ) ↑𝑟 𝑁 ) ⊆ ( 𝑗 ∈ ℕ ( 𝐷𝑟 𝑗 ) ↑𝑟 𝑁 ) )