Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) = ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 1 ) ) |
2 |
1
|
iuneq2d |
⊢ ( 𝑥 = 1 → ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) = ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 1 ) ) |
3 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) = ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 1 ) ) |
4 |
2 3
|
sseq12d |
⊢ ( 𝑥 = 1 → ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) ↔ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 1 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 1 ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) = ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ) |
6 |
5
|
iuneq2d |
⊢ ( 𝑥 = 𝑦 → ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) = ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) = ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ) |
8 |
6 7
|
sseq12d |
⊢ ( 𝑥 = 𝑦 → ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) ↔ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ) ) |
9 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) = ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) ) |
10 |
9
|
iuneq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) = ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) = ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) ) |
12 |
10 11
|
sseq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) ↔ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) = ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑁 ) ) |
14 |
13
|
iuneq2d |
⊢ ( 𝑥 = 𝑁 → ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) = ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑁 ) ) |
15 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) = ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑁 ) ) |
16 |
14 15
|
sseq12d |
⊢ ( 𝑥 = 𝑁 → ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) ↔ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑁 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑁 ) ) ) |
17 |
|
oveq2 |
⊢ ( 𝑘 = 𝑙 → ( 𝐷 ↑𝑟 𝑘 ) = ( 𝐷 ↑𝑟 𝑙 ) ) |
18 |
17
|
cbviunv |
⊢ ∪ 𝑘 ∈ ℕ ( 𝐷 ↑𝑟 𝑘 ) = ∪ 𝑙 ∈ ℕ ( 𝐷 ↑𝑟 𝑙 ) |
19 |
|
oveq2 |
⊢ ( 𝑙 = 𝑗 → ( 𝐷 ↑𝑟 𝑙 ) = ( 𝐷 ↑𝑟 𝑗 ) ) |
20 |
19
|
cbviunv |
⊢ ∪ 𝑙 ∈ ℕ ( 𝐷 ↑𝑟 𝑙 ) = ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) |
21 |
18 20
|
eqtri |
⊢ ∪ 𝑘 ∈ ℕ ( 𝐷 ↑𝑟 𝑘 ) = ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) |
22 |
|
ovex |
⊢ ( 𝐷 ↑𝑟 𝑘 ) ∈ V |
23 |
|
relexp1g |
⊢ ( ( 𝐷 ↑𝑟 𝑘 ) ∈ V → ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 1 ) = ( 𝐷 ↑𝑟 𝑘 ) ) |
24 |
22 23
|
mp1i |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 1 ) = ( 𝐷 ↑𝑟 𝑘 ) ) |
25 |
24
|
iuneq2i |
⊢ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 1 ) = ∪ 𝑘 ∈ ℕ ( 𝐷 ↑𝑟 𝑘 ) |
26 |
|
nnex |
⊢ ℕ ∈ V |
27 |
|
ovex |
⊢ ( 𝐷 ↑𝑟 𝑗 ) ∈ V |
28 |
26 27
|
iunex |
⊢ ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ∈ V |
29 |
|
relexp1g |
⊢ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ∈ V → ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 1 ) = ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ) |
30 |
28 29
|
ax-mp |
⊢ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 1 ) = ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) |
31 |
21 25 30
|
3eqtr4i |
⊢ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 1 ) = ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 1 ) |
32 |
31
|
eqimssi |
⊢ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 1 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 1 ) |
33 |
|
oveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝐷 ↑𝑟 𝑘 ) = ( 𝐷 ↑𝑟 𝑚 ) ) |
34 |
33
|
oveq1d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) = ( ( 𝐷 ↑𝑟 𝑚 ) ↑𝑟 𝑦 ) ) |
35 |
34 33
|
coeq12d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑘 ) ) = ( ( ( 𝐷 ↑𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
36 |
35
|
cbviunv |
⊢ ∪ 𝑘 ∈ ℕ ( ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑘 ) ) = ∪ 𝑚 ∈ ℕ ( ( ( 𝐷 ↑𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) |
37 |
|
ss2iun |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( ( 𝐷 ↑𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ⊆ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) → ∪ 𝑚 ∈ ℕ ( ( ( 𝐷 ↑𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ⊆ ∪ 𝑚 ∈ ℕ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
38 |
34
|
ssiun2s |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝐷 ↑𝑟 𝑚 ) ↑𝑟 𝑦 ) ⊆ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ) |
39 |
|
coss1 |
⊢ ( ( ( 𝐷 ↑𝑟 𝑚 ) ↑𝑟 𝑦 ) ⊆ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) → ( ( ( 𝐷 ↑𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ⊆ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
40 |
38 39
|
syl |
⊢ ( 𝑚 ∈ ℕ → ( ( ( 𝐷 ↑𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ⊆ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
41 |
37 40
|
mprg |
⊢ ∪ 𝑚 ∈ ℕ ( ( ( 𝐷 ↑𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ⊆ ∪ 𝑚 ∈ ℕ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) |
42 |
36 41
|
eqsstri |
⊢ ∪ 𝑘 ∈ ℕ ( ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑘 ) ) ⊆ ∪ 𝑚 ∈ ℕ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) |
43 |
|
coss1 |
⊢ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) → ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ⊆ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
44 |
43
|
ralrimivw |
⊢ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) → ∀ 𝑚 ∈ ℕ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ⊆ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
45 |
|
ss2iun |
⊢ ( ∀ 𝑚 ∈ ℕ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ⊆ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) → ∪ 𝑚 ∈ ℕ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ⊆ ∪ 𝑚 ∈ ℕ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
46 |
44 45
|
syl |
⊢ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) → ∪ 𝑚 ∈ ℕ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ⊆ ∪ 𝑚 ∈ ℕ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
47 |
42 46
|
sstrid |
⊢ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) → ∪ 𝑘 ∈ ℕ ( ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑘 ) ) ⊆ ∪ 𝑚 ∈ ℕ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
48 |
47
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ ∧ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ) → ∪ 𝑘 ∈ ℕ ( ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑘 ) ) ⊆ ∪ 𝑚 ∈ ℕ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
49 |
|
relexpsucnnr |
⊢ ( ( ( 𝐷 ↑𝑟 𝑘 ) ∈ V ∧ 𝑦 ∈ ℕ ) → ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑘 ) ) ) |
50 |
22 49
|
mpan |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑘 ) ) ) |
51 |
50
|
iuneq2d |
⊢ ( 𝑦 ∈ ℕ → ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) = ∪ 𝑘 ∈ ℕ ( ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑘 ) ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ) → ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) = ∪ 𝑘 ∈ ℕ ( ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑘 ) ) ) |
53 |
|
relexpsucnnr |
⊢ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ∈ V ∧ 𝑦 ∈ ℕ ) → ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ) ) |
54 |
28 53
|
mpan |
⊢ ( 𝑦 ∈ ℕ → ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ) ) |
55 |
|
oveq2 |
⊢ ( 𝑗 = 𝑚 → ( 𝐷 ↑𝑟 𝑗 ) = ( 𝐷 ↑𝑟 𝑚 ) ) |
56 |
55
|
cbviunv |
⊢ ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) = ∪ 𝑚 ∈ ℕ ( 𝐷 ↑𝑟 𝑚 ) |
57 |
56
|
coeq2i |
⊢ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ) = ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ∪ 𝑚 ∈ ℕ ( 𝐷 ↑𝑟 𝑚 ) ) |
58 |
|
coiun |
⊢ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ∪ 𝑚 ∈ ℕ ( 𝐷 ↑𝑟 𝑚 ) ) = ∪ 𝑚 ∈ ℕ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) |
59 |
57 58
|
eqtri |
⊢ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ) = ∪ 𝑚 ∈ ℕ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) |
60 |
54 59
|
eqtrdi |
⊢ ( 𝑦 ∈ ℕ → ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) = ∪ 𝑚 ∈ ℕ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
61 |
60
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ) → ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) = ∪ 𝑚 ∈ ℕ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
62 |
48 52 61
|
3sstr4d |
⊢ ( ( 𝑦 ∈ ℕ ∧ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ) → ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) ) |
63 |
62
|
ex |
⊢ ( 𝑦 ∈ ℕ → ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) → ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) ) ) |
64 |
4 8 12 16 32 63
|
nnind |
⊢ ( 𝑁 ∈ ℕ → ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑁 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑁 ) ) |