| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) = ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 1 ) ) |
| 2 |
1
|
iuneq2d |
⊢ ( 𝑥 = 1 → ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) = ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 1 ) ) |
| 3 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) = ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 1 ) ) |
| 4 |
2 3
|
sseq12d |
⊢ ( 𝑥 = 1 → ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) ↔ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 1 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 1 ) ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) = ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ) |
| 6 |
5
|
iuneq2d |
⊢ ( 𝑥 = 𝑦 → ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) = ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) = ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ) |
| 8 |
6 7
|
sseq12d |
⊢ ( 𝑥 = 𝑦 → ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) ↔ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) = ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) ) |
| 10 |
9
|
iuneq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) = ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) ) |
| 11 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) = ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) ) |
| 12 |
10 11
|
sseq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) ↔ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) = ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑁 ) ) |
| 14 |
13
|
iuneq2d |
⊢ ( 𝑥 = 𝑁 → ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) = ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑁 ) ) |
| 15 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) = ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑁 ) ) |
| 16 |
14 15
|
sseq12d |
⊢ ( 𝑥 = 𝑁 → ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑥 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) ↔ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑁 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑁 ) ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑘 = 𝑙 → ( 𝐷 ↑𝑟 𝑘 ) = ( 𝐷 ↑𝑟 𝑙 ) ) |
| 18 |
17
|
cbviunv |
⊢ ∪ 𝑘 ∈ ℕ ( 𝐷 ↑𝑟 𝑘 ) = ∪ 𝑙 ∈ ℕ ( 𝐷 ↑𝑟 𝑙 ) |
| 19 |
|
oveq2 |
⊢ ( 𝑙 = 𝑗 → ( 𝐷 ↑𝑟 𝑙 ) = ( 𝐷 ↑𝑟 𝑗 ) ) |
| 20 |
19
|
cbviunv |
⊢ ∪ 𝑙 ∈ ℕ ( 𝐷 ↑𝑟 𝑙 ) = ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) |
| 21 |
18 20
|
eqtri |
⊢ ∪ 𝑘 ∈ ℕ ( 𝐷 ↑𝑟 𝑘 ) = ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) |
| 22 |
|
ovex |
⊢ ( 𝐷 ↑𝑟 𝑘 ) ∈ V |
| 23 |
|
relexp1g |
⊢ ( ( 𝐷 ↑𝑟 𝑘 ) ∈ V → ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 1 ) = ( 𝐷 ↑𝑟 𝑘 ) ) |
| 24 |
22 23
|
mp1i |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 1 ) = ( 𝐷 ↑𝑟 𝑘 ) ) |
| 25 |
24
|
iuneq2i |
⊢ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 1 ) = ∪ 𝑘 ∈ ℕ ( 𝐷 ↑𝑟 𝑘 ) |
| 26 |
|
nnex |
⊢ ℕ ∈ V |
| 27 |
|
ovex |
⊢ ( 𝐷 ↑𝑟 𝑗 ) ∈ V |
| 28 |
26 27
|
iunex |
⊢ ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ∈ V |
| 29 |
|
relexp1g |
⊢ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ∈ V → ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 1 ) = ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ) |
| 30 |
28 29
|
ax-mp |
⊢ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 1 ) = ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) |
| 31 |
21 25 30
|
3eqtr4i |
⊢ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 1 ) = ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 1 ) |
| 32 |
31
|
eqimssi |
⊢ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 1 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 1 ) |
| 33 |
|
oveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝐷 ↑𝑟 𝑘 ) = ( 𝐷 ↑𝑟 𝑚 ) ) |
| 34 |
33
|
oveq1d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) = ( ( 𝐷 ↑𝑟 𝑚 ) ↑𝑟 𝑦 ) ) |
| 35 |
34 33
|
coeq12d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑘 ) ) = ( ( ( 𝐷 ↑𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
| 36 |
35
|
cbviunv |
⊢ ∪ 𝑘 ∈ ℕ ( ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑘 ) ) = ∪ 𝑚 ∈ ℕ ( ( ( 𝐷 ↑𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) |
| 37 |
|
ss2iun |
⊢ ( ∀ 𝑚 ∈ ℕ ( ( ( 𝐷 ↑𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ⊆ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) → ∪ 𝑚 ∈ ℕ ( ( ( 𝐷 ↑𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ⊆ ∪ 𝑚 ∈ ℕ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
| 38 |
34
|
ssiun2s |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝐷 ↑𝑟 𝑚 ) ↑𝑟 𝑦 ) ⊆ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ) |
| 39 |
|
coss1 |
⊢ ( ( ( 𝐷 ↑𝑟 𝑚 ) ↑𝑟 𝑦 ) ⊆ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) → ( ( ( 𝐷 ↑𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ⊆ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
| 40 |
38 39
|
syl |
⊢ ( 𝑚 ∈ ℕ → ( ( ( 𝐷 ↑𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ⊆ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
| 41 |
37 40
|
mprg |
⊢ ∪ 𝑚 ∈ ℕ ( ( ( 𝐷 ↑𝑟 𝑚 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ⊆ ∪ 𝑚 ∈ ℕ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) |
| 42 |
36 41
|
eqsstri |
⊢ ∪ 𝑘 ∈ ℕ ( ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑘 ) ) ⊆ ∪ 𝑚 ∈ ℕ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) |
| 43 |
|
coss1 |
⊢ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) → ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ⊆ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
| 44 |
43
|
ralrimivw |
⊢ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) → ∀ 𝑚 ∈ ℕ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ⊆ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
| 45 |
|
ss2iun |
⊢ ( ∀ 𝑚 ∈ ℕ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ⊆ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) → ∪ 𝑚 ∈ ℕ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ⊆ ∪ 𝑚 ∈ ℕ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
| 46 |
44 45
|
syl |
⊢ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) → ∪ 𝑚 ∈ ℕ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ⊆ ∪ 𝑚 ∈ ℕ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
| 47 |
42 46
|
sstrid |
⊢ ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) → ∪ 𝑘 ∈ ℕ ( ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑘 ) ) ⊆ ∪ 𝑚 ∈ ℕ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ ∧ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ) → ∪ 𝑘 ∈ ℕ ( ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑘 ) ) ⊆ ∪ 𝑚 ∈ ℕ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
| 49 |
|
relexpsucnnr |
⊢ ( ( ( 𝐷 ↑𝑟 𝑘 ) ∈ V ∧ 𝑦 ∈ ℕ ) → ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑘 ) ) ) |
| 50 |
22 49
|
mpan |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑘 ) ) ) |
| 51 |
50
|
iuneq2d |
⊢ ( 𝑦 ∈ ℕ → ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) = ∪ 𝑘 ∈ ℕ ( ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑘 ) ) ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ) → ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) = ∪ 𝑘 ∈ ℕ ( ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑘 ) ) ) |
| 53 |
|
relexpsucnnr |
⊢ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ∈ V ∧ 𝑦 ∈ ℕ ) → ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ) ) |
| 54 |
28 53
|
mpan |
⊢ ( 𝑦 ∈ ℕ → ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ) ) |
| 55 |
|
oveq2 |
⊢ ( 𝑗 = 𝑚 → ( 𝐷 ↑𝑟 𝑗 ) = ( 𝐷 ↑𝑟 𝑚 ) ) |
| 56 |
55
|
cbviunv |
⊢ ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) = ∪ 𝑚 ∈ ℕ ( 𝐷 ↑𝑟 𝑚 ) |
| 57 |
56
|
coeq2i |
⊢ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ) = ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ∪ 𝑚 ∈ ℕ ( 𝐷 ↑𝑟 𝑚 ) ) |
| 58 |
|
coiun |
⊢ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ∪ 𝑚 ∈ ℕ ( 𝐷 ↑𝑟 𝑚 ) ) = ∪ 𝑚 ∈ ℕ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) |
| 59 |
57 58
|
eqtri |
⊢ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ) = ∪ 𝑚 ∈ ℕ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) |
| 60 |
54 59
|
eqtrdi |
⊢ ( 𝑦 ∈ ℕ → ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) = ∪ 𝑚 ∈ ℕ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
| 61 |
60
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ) → ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) = ∪ 𝑚 ∈ ℕ ( ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ( 𝐷 ↑𝑟 𝑚 ) ) ) |
| 62 |
48 52 61
|
3sstr4d |
⊢ ( ( 𝑦 ∈ ℕ ∧ ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ) → ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) ) |
| 63 |
62
|
ex |
⊢ ( 𝑦 ∈ ℕ → ( ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑦 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) → ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 ( 𝑦 + 1 ) ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) ) ) |
| 64 |
4 8 12 16 32 63
|
nnind |
⊢ ( 𝑁 ∈ ℕ → ∪ 𝑘 ∈ ℕ ( ( 𝐷 ↑𝑟 𝑘 ) ↑𝑟 𝑁 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝐷 ↑𝑟 𝑗 ) ↑𝑟 𝑁 ) ) |