Step |
Hyp |
Ref |
Expression |
1 |
|
iunrelexpmin2.def |
⊢ 𝐶 = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 ( 𝑟 ↑𝑟 𝑛 ) ) |
2 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0 ) ∧ 𝑟 = 𝑅 ) → 𝑁 = ℕ0 ) |
3 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0 ) ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) |
4 |
3
|
oveq1d |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0 ) ∧ 𝑟 = 𝑅 ) → ( 𝑟 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 𝑛 ) ) |
5 |
2 4
|
iuneq12d |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0 ) ∧ 𝑟 = 𝑅 ) → ∪ 𝑛 ∈ 𝑁 ( 𝑟 ↑𝑟 𝑛 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ) |
6 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
7 |
6
|
adantr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0 ) → 𝑅 ∈ V ) |
8 |
|
nn0ex |
⊢ ℕ0 ∈ V |
9 |
|
ovex |
⊢ ( 𝑅 ↑𝑟 𝑛 ) ∈ V |
10 |
8 9
|
iunex |
⊢ ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ∈ V |
11 |
10
|
a1i |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0 ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ∈ V ) |
12 |
1 5 7 11
|
fvmptd2 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0 ) → ( 𝐶 ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ) |
13 |
|
relexp0g |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
14 |
13
|
sseq1d |
⊢ ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ↔ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) |
15 |
|
relexp1g |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
16 |
15
|
sseq1d |
⊢ ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ↔ 𝑅 ⊆ 𝑠 ) ) |
17 |
14 16
|
3anbi12d |
⊢ ( 𝑅 ∈ 𝑉 → ( ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ) |
18 |
|
elnn0 |
⊢ ( 𝑛 ∈ ℕ0 ↔ ( 𝑛 ∈ ℕ ∨ 𝑛 = 0 ) ) |
19 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 𝑅 ↑𝑟 𝑥 ) = ( 𝑅 ↑𝑟 1 ) ) |
20 |
19
|
sseq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑅 ↑𝑟 𝑥 ) ⊆ 𝑠 ↔ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ) ) |
21 |
20
|
imbi2d |
⊢ ( 𝑥 = 1 → ( ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 𝑥 ) ⊆ 𝑠 ) ↔ ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ) ) ) |
22 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑅 ↑𝑟 𝑥 ) = ( 𝑅 ↑𝑟 𝑦 ) ) |
23 |
22
|
sseq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑅 ↑𝑟 𝑥 ) ⊆ 𝑠 ↔ ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 𝑥 ) ⊆ 𝑠 ) ↔ ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) ) ) |
25 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑅 ↑𝑟 𝑥 ) = ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) ) |
26 |
25
|
sseq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑅 ↑𝑟 𝑥 ) ⊆ 𝑠 ↔ ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) ⊆ 𝑠 ) ) |
27 |
26
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 𝑥 ) ⊆ 𝑠 ) ↔ ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) ⊆ 𝑠 ) ) ) |
28 |
|
oveq2 |
⊢ ( 𝑥 = 𝑛 → ( 𝑅 ↑𝑟 𝑥 ) = ( 𝑅 ↑𝑟 𝑛 ) ) |
29 |
28
|
sseq1d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑅 ↑𝑟 𝑥 ) ⊆ 𝑠 ↔ ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
30 |
29
|
imbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 𝑥 ) ⊆ 𝑠 ) ↔ ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) ) |
31 |
|
simpr2 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ) |
32 |
|
simp1 |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ∧ ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) → 𝑦 ∈ ℕ ) |
33 |
|
1nn |
⊢ 1 ∈ ℕ |
34 |
33
|
a1i |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ∧ ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) → 1 ∈ ℕ ) |
35 |
|
simp2l |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ∧ ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) → 𝑅 ∈ 𝑉 ) |
36 |
|
relexpaddnn |
⊢ ( ( 𝑦 ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑦 ) ∘ ( 𝑅 ↑𝑟 1 ) ) = ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) ) |
37 |
32 34 35 36
|
syl3anc |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ∧ ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) → ( ( 𝑅 ↑𝑟 𝑦 ) ∘ ( 𝑅 ↑𝑟 1 ) ) = ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) ) |
38 |
|
simp2r3 |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ∧ ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) → ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) |
39 |
|
simp3 |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ∧ ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) → ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) |
40 |
|
simp2r2 |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ∧ ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) → ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ) |
41 |
38 39 40
|
trrelssd |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ∧ ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) → ( ( 𝑅 ↑𝑟 𝑦 ) ∘ ( 𝑅 ↑𝑟 1 ) ) ⊆ 𝑠 ) |
42 |
37 41
|
eqsstrrd |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ∧ ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) → ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) ⊆ 𝑠 ) |
43 |
42
|
3exp |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 → ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) ⊆ 𝑠 ) ) ) |
44 |
43
|
a2d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) → ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) ⊆ 𝑠 ) ) ) |
45 |
21 24 27 30 31 44
|
nnind |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
46 |
|
simpr1 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ) |
47 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( 𝑅 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 0 ) ) |
48 |
47
|
sseq1d |
⊢ ( 𝑛 = 0 → ( ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ↔ ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ) ) |
49 |
46 48
|
syl5ibr |
⊢ ( 𝑛 = 0 → ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
50 |
45 49
|
jaoi |
⊢ ( ( 𝑛 ∈ ℕ ∨ 𝑛 = 0 ) → ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
51 |
18 50
|
sylbi |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
52 |
51
|
com12 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑛 ∈ ℕ0 → ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
53 |
52
|
ralrimiv |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) |
54 |
|
iunss |
⊢ ( ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ↔ ∀ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) |
55 |
53 54
|
sylibr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) |
56 |
55
|
ex |
⊢ ( 𝑅 ∈ 𝑉 → ( ( ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ∧ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
57 |
17 56
|
sylbird |
⊢ ( 𝑅 ∈ 𝑉 → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
58 |
57
|
adantr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0 ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
59 |
|
sseq1 |
⊢ ( ( 𝐶 ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) → ( ( 𝐶 ‘ 𝑅 ) ⊆ 𝑠 ↔ ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
60 |
59
|
imbi2d |
⊢ ( ( 𝐶 ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) → ( ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( 𝐶 ‘ 𝑅 ) ⊆ 𝑠 ) ↔ ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) ) |
61 |
58 60
|
syl5ibr |
⊢ ( ( 𝐶 ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) → ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0 ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( 𝐶 ‘ 𝑅 ) ⊆ 𝑠 ) ) ) |
62 |
12 61
|
mpcom |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0 ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( 𝐶 ‘ 𝑅 ) ⊆ 𝑠 ) ) |
63 |
62
|
alrimiv |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0 ) → ∀ 𝑠 ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( 𝐶 ‘ 𝑅 ) ⊆ 𝑠 ) ) |