| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elpri |
⊢ ( 𝐽 ∈ { 0 , 1 } → ( 𝐽 = 0 ∨ 𝐽 = 1 ) ) |
| 2 |
|
elpri |
⊢ ( 𝐾 ∈ { 0 , 1 } → ( 𝐾 = 0 ∨ 𝐾 = 1 ) ) |
| 3 |
|
dmresi |
⊢ dom ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( dom 𝑅 ∪ ran 𝑅 ) |
| 4 |
|
rnresi |
⊢ ran ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( dom 𝑅 ∪ ran 𝑅 ) |
| 5 |
3 4
|
uneq12i |
⊢ ( dom ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∪ ran ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ( dom 𝑅 ∪ ran 𝑅 ) ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 6 |
|
unidm |
⊢ ( ( dom 𝑅 ∪ ran 𝑅 ) ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( dom 𝑅 ∪ ran 𝑅 ) |
| 7 |
5 6
|
eqtri |
⊢ ( dom ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∪ ran ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( dom 𝑅 ∪ ran 𝑅 ) |
| 8 |
7
|
reseq2i |
⊢ ( I ↾ ( dom ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∪ ran ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 9 |
|
simp1 |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → 𝐽 = 0 ) |
| 10 |
9
|
oveq2d |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( 𝑅 ↑𝑟 𝐽 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 11 |
|
simp3l |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → 𝑅 ∈ 𝑉 ) |
| 12 |
|
relexp0g |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 14 |
10 13
|
eqtrd |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( 𝑅 ↑𝑟 𝐽 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 15 |
|
simp2 |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → 𝐾 = 0 ) |
| 16 |
14 15
|
oveq12d |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ↑𝑟 0 ) ) |
| 17 |
|
dmexg |
⊢ ( 𝑅 ∈ 𝑉 → dom 𝑅 ∈ V ) |
| 18 |
|
rnexg |
⊢ ( 𝑅 ∈ 𝑉 → ran 𝑅 ∈ V ) |
| 19 |
17 18
|
unexd |
⊢ ( 𝑅 ∈ 𝑉 → ( dom 𝑅 ∪ ran 𝑅 ) ∈ V ) |
| 20 |
19
|
resiexd |
⊢ ( 𝑅 ∈ 𝑉 → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V ) |
| 21 |
|
relexp0g |
⊢ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V → ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ↑𝑟 0 ) = ( I ↾ ( dom ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∪ ran ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) ) |
| 22 |
11 20 21
|
3syl |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ↑𝑟 0 ) = ( I ↾ ( dom ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∪ ran ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) ) |
| 23 |
16 22
|
eqtrd |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( I ↾ ( dom ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∪ ran ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) ) |
| 24 |
|
simp3r |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) |
| 25 |
|
0re |
⊢ 0 ∈ ℝ |
| 26 |
25
|
ltnri |
⊢ ¬ 0 < 0 |
| 27 |
9 15
|
breq12d |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( 𝐽 < 𝐾 ↔ 0 < 0 ) ) |
| 28 |
26 27
|
mtbiri |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ¬ 𝐽 < 𝐾 ) |
| 29 |
28
|
iffalsed |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) = 𝐾 ) |
| 30 |
24 29 15
|
3eqtrd |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → 𝐼 = 0 ) |
| 31 |
30
|
oveq2d |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( 𝑅 ↑𝑟 𝐼 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 32 |
31 13
|
eqtrd |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( 𝑅 ↑𝑟 𝐼 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 33 |
8 23 32
|
3eqtr4a |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) |
| 34 |
33
|
3exp |
⊢ ( 𝐽 = 0 → ( 𝐾 = 0 → ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) ) |
| 35 |
|
simp1 |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → 𝐽 = 1 ) |
| 36 |
35
|
oveq2d |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( 𝑅 ↑𝑟 𝐽 ) = ( 𝑅 ↑𝑟 1 ) ) |
| 37 |
|
simp3l |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → 𝑅 ∈ 𝑉 ) |
| 38 |
37
|
relexp1d |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
| 39 |
36 38
|
eqtrd |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( 𝑅 ↑𝑟 𝐽 ) = 𝑅 ) |
| 40 |
|
simp2 |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → 𝐾 = 0 ) |
| 41 |
39 40
|
oveq12d |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 42 |
|
simp3r |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) |
| 43 |
|
0lt1 |
⊢ 0 < 1 |
| 44 |
|
1re |
⊢ 1 ∈ ℝ |
| 45 |
25 44
|
ltnsymi |
⊢ ( 0 < 1 → ¬ 1 < 0 ) |
| 46 |
43 45
|
mp1i |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ¬ 1 < 0 ) |
| 47 |
35 40
|
breq12d |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( 𝐽 < 𝐾 ↔ 1 < 0 ) ) |
| 48 |
46 47
|
mtbird |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ¬ 𝐽 < 𝐾 ) |
| 49 |
48
|
iffalsed |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) = 𝐾 ) |
| 50 |
42 49 40
|
3eqtrd |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → 𝐼 = 0 ) |
| 51 |
50
|
oveq2d |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( 𝑅 ↑𝑟 𝐼 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 52 |
41 51
|
eqtr4d |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 0 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) |
| 53 |
52
|
3exp |
⊢ ( 𝐽 = 1 → ( 𝐾 = 0 → ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) ) |
| 54 |
34 53
|
jaoi |
⊢ ( ( 𝐽 = 0 ∨ 𝐽 = 1 ) → ( 𝐾 = 0 → ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) ) |
| 55 |
|
ovex |
⊢ ( 𝑅 ↑𝑟 0 ) ∈ V |
| 56 |
|
relexp1g |
⊢ ( ( 𝑅 ↑𝑟 0 ) ∈ V → ( ( 𝑅 ↑𝑟 0 ) ↑𝑟 1 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 57 |
55 56
|
mp1i |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( ( 𝑅 ↑𝑟 0 ) ↑𝑟 1 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 58 |
|
simp1 |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → 𝐽 = 0 ) |
| 59 |
58
|
oveq2d |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( 𝑅 ↑𝑟 𝐽 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 60 |
|
simp2 |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → 𝐾 = 1 ) |
| 61 |
59 60
|
oveq12d |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( ( 𝑅 ↑𝑟 0 ) ↑𝑟 1 ) ) |
| 62 |
|
simp3r |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) |
| 63 |
58 60
|
breq12d |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( 𝐽 < 𝐾 ↔ 0 < 1 ) ) |
| 64 |
43 63
|
mpbiri |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → 𝐽 < 𝐾 ) |
| 65 |
64
|
iftrued |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) = 𝐽 ) |
| 66 |
62 65 58
|
3eqtrd |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → 𝐼 = 0 ) |
| 67 |
66
|
oveq2d |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( 𝑅 ↑𝑟 𝐼 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 68 |
57 61 67
|
3eqtr4d |
⊢ ( ( 𝐽 = 0 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) |
| 69 |
68
|
3exp |
⊢ ( 𝐽 = 0 → ( 𝐾 = 1 → ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) ) |
| 70 |
|
simp1 |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → 𝐽 = 1 ) |
| 71 |
70
|
oveq2d |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( 𝑅 ↑𝑟 𝐽 ) = ( 𝑅 ↑𝑟 1 ) ) |
| 72 |
|
simp3l |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → 𝑅 ∈ 𝑉 ) |
| 73 |
72
|
relexp1d |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
| 74 |
71 73
|
eqtrd |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( 𝑅 ↑𝑟 𝐽 ) = 𝑅 ) |
| 75 |
|
simp2 |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → 𝐾 = 1 ) |
| 76 |
74 75
|
oveq12d |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 1 ) ) |
| 77 |
|
simp3r |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) |
| 78 |
44
|
ltnri |
⊢ ¬ 1 < 1 |
| 79 |
70 75
|
breq12d |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( 𝐽 < 𝐾 ↔ 1 < 1 ) ) |
| 80 |
78 79
|
mtbiri |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ¬ 𝐽 < 𝐾 ) |
| 81 |
80
|
iffalsed |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) = 𝐾 ) |
| 82 |
77 81 75
|
3eqtrd |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → 𝐼 = 1 ) |
| 83 |
82
|
oveq2d |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( 𝑅 ↑𝑟 𝐼 ) = ( 𝑅 ↑𝑟 1 ) ) |
| 84 |
76 83
|
eqtr4d |
⊢ ( ( 𝐽 = 1 ∧ 𝐾 = 1 ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) |
| 85 |
84
|
3exp |
⊢ ( 𝐽 = 1 → ( 𝐾 = 1 → ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) ) |
| 86 |
69 85
|
jaoi |
⊢ ( ( 𝐽 = 0 ∨ 𝐽 = 1 ) → ( 𝐾 = 1 → ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) ) |
| 87 |
54 86
|
jaod |
⊢ ( ( 𝐽 = 0 ∨ 𝐽 = 1 ) → ( ( 𝐾 = 0 ∨ 𝐾 = 1 ) → ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) ) |
| 88 |
87
|
imp |
⊢ ( ( ( 𝐽 = 0 ∨ 𝐽 = 1 ) ∧ ( 𝐾 = 0 ∨ 𝐾 = 1 ) ) → ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) |
| 89 |
1 2 88
|
syl2an |
⊢ ( ( 𝐽 ∈ { 0 , 1 } ∧ 𝐾 ∈ { 0 , 1 } ) → ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) |
| 90 |
89
|
impcom |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = if ( 𝐽 < 𝐾 , 𝐽 , 𝐾 ) ) ∧ ( 𝐽 ∈ { 0 , 1 } ∧ 𝐾 ∈ { 0 , 1 } ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) |