Description: Repeated raising a relation to the first power is idempotent. (Contributed by RP, 12-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relexp1idm | ⊢ ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 1 ) ↑𝑟 1 ) = ( 𝑅 ↑𝑟 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifid | ⊢ if ( 1 < 1 , 1 , 1 ) = 1 | |
| 2 | 1 | eqcomi | ⊢ 1 = if ( 1 < 1 , 1 , 1 ) |
| 3 | 2 | jctr | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ 𝑉 ∧ 1 = if ( 1 < 1 , 1 , 1 ) ) ) |
| 4 | 1ex | ⊢ 1 ∈ V | |
| 5 | 4 | prid2 | ⊢ 1 ∈ { 0 , 1 } |
| 6 | 5 5 | pm3.2i | ⊢ ( 1 ∈ { 0 , 1 } ∧ 1 ∈ { 0 , 1 } ) |
| 7 | relexp01min | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 1 = if ( 1 < 1 , 1 , 1 ) ) ∧ ( 1 ∈ { 0 , 1 } ∧ 1 ∈ { 0 , 1 } ) ) → ( ( 𝑅 ↑𝑟 1 ) ↑𝑟 1 ) = ( 𝑅 ↑𝑟 1 ) ) | |
| 8 | 3 6 7 | sylancl | ⊢ ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 1 ) ↑𝑟 1 ) = ( 𝑅 ↑𝑟 1 ) ) |