Metamath Proof Explorer


Theorem relexp1idm

Description: Repeated raising a relation to the first power is idempotent. (Contributed by RP, 12-Jun-2020)

Ref Expression
Assertion relexp1idm ( 𝑅𝑉 → ( ( 𝑅𝑟 1 ) ↑𝑟 1 ) = ( 𝑅𝑟 1 ) )

Proof

Step Hyp Ref Expression
1 ifid if ( 1 < 1 , 1 , 1 ) = 1
2 1 eqcomi 1 = if ( 1 < 1 , 1 , 1 )
3 2 jctr ( 𝑅𝑉 → ( 𝑅𝑉 ∧ 1 = if ( 1 < 1 , 1 , 1 ) ) )
4 1ex 1 ∈ V
5 4 prid2 1 ∈ { 0 , 1 }
6 5 5 pm3.2i ( 1 ∈ { 0 , 1 } ∧ 1 ∈ { 0 , 1 } )
7 relexp01min ( ( ( 𝑅𝑉 ∧ 1 = if ( 1 < 1 , 1 , 1 ) ) ∧ ( 1 ∈ { 0 , 1 } ∧ 1 ∈ { 0 , 1 } ) ) → ( ( 𝑅𝑟 1 ) ↑𝑟 1 ) = ( 𝑅𝑟 1 ) )
8 3 6 7 sylancl ( 𝑅𝑉 → ( ( 𝑅𝑟 1 ) ↑𝑟 1 ) = ( 𝑅𝑟 1 ) )