Description: Repeated raising a relation to the first power is idempotent. (Contributed by RP, 12-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | relexp1idm | |- ( R e. V -> ( ( R ^r 1 ) ^r 1 ) = ( R ^r 1 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifid | |- if ( 1 < 1 , 1 , 1 ) = 1 |
|
2 | 1 | eqcomi | |- 1 = if ( 1 < 1 , 1 , 1 ) |
3 | 2 | jctr | |- ( R e. V -> ( R e. V /\ 1 = if ( 1 < 1 , 1 , 1 ) ) ) |
4 | 1ex | |- 1 e. _V |
|
5 | 4 | prid2 | |- 1 e. { 0 , 1 } |
6 | 5 5 | pm3.2i | |- ( 1 e. { 0 , 1 } /\ 1 e. { 0 , 1 } ) |
7 | relexp01min | |- ( ( ( R e. V /\ 1 = if ( 1 < 1 , 1 , 1 ) ) /\ ( 1 e. { 0 , 1 } /\ 1 e. { 0 , 1 } ) ) -> ( ( R ^r 1 ) ^r 1 ) = ( R ^r 1 ) ) |
|
8 | 3 6 7 | sylancl | |- ( R e. V -> ( ( R ^r 1 ) ^r 1 ) = ( R ^r 1 ) ) |