Step |
Hyp |
Ref |
Expression |
1 |
|
elpri |
|- ( J e. { 0 , 1 } -> ( J = 0 \/ J = 1 ) ) |
2 |
|
elpri |
|- ( K e. { 0 , 1 } -> ( K = 0 \/ K = 1 ) ) |
3 |
|
dmresi |
|- dom ( _I |` ( dom R u. ran R ) ) = ( dom R u. ran R ) |
4 |
|
rnresi |
|- ran ( _I |` ( dom R u. ran R ) ) = ( dom R u. ran R ) |
5 |
3 4
|
uneq12i |
|- ( dom ( _I |` ( dom R u. ran R ) ) u. ran ( _I |` ( dom R u. ran R ) ) ) = ( ( dom R u. ran R ) u. ( dom R u. ran R ) ) |
6 |
|
unidm |
|- ( ( dom R u. ran R ) u. ( dom R u. ran R ) ) = ( dom R u. ran R ) |
7 |
5 6
|
eqtri |
|- ( dom ( _I |` ( dom R u. ran R ) ) u. ran ( _I |` ( dom R u. ran R ) ) ) = ( dom R u. ran R ) |
8 |
7
|
reseq2i |
|- ( _I |` ( dom ( _I |` ( dom R u. ran R ) ) u. ran ( _I |` ( dom R u. ran R ) ) ) ) = ( _I |` ( dom R u. ran R ) ) |
9 |
|
simp1 |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> J = 0 ) |
10 |
9
|
oveq2d |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r J ) = ( R ^r 0 ) ) |
11 |
|
simp3l |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> R e. V ) |
12 |
|
relexp0g |
|- ( R e. V -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
13 |
11 12
|
syl |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
14 |
10 13
|
eqtrd |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r J ) = ( _I |` ( dom R u. ran R ) ) ) |
15 |
|
simp2 |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> K = 0 ) |
16 |
14 15
|
oveq12d |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( R ^r J ) ^r K ) = ( ( _I |` ( dom R u. ran R ) ) ^r 0 ) ) |
17 |
|
dmexg |
|- ( R e. V -> dom R e. _V ) |
18 |
|
rnexg |
|- ( R e. V -> ran R e. _V ) |
19 |
|
unexg |
|- ( ( dom R e. _V /\ ran R e. _V ) -> ( dom R u. ran R ) e. _V ) |
20 |
17 18 19
|
syl2anc |
|- ( R e. V -> ( dom R u. ran R ) e. _V ) |
21 |
20
|
resiexd |
|- ( R e. V -> ( _I |` ( dom R u. ran R ) ) e. _V ) |
22 |
|
relexp0g |
|- ( ( _I |` ( dom R u. ran R ) ) e. _V -> ( ( _I |` ( dom R u. ran R ) ) ^r 0 ) = ( _I |` ( dom ( _I |` ( dom R u. ran R ) ) u. ran ( _I |` ( dom R u. ran R ) ) ) ) ) |
23 |
11 21 22
|
3syl |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( _I |` ( dom R u. ran R ) ) ^r 0 ) = ( _I |` ( dom ( _I |` ( dom R u. ran R ) ) u. ran ( _I |` ( dom R u. ran R ) ) ) ) ) |
24 |
16 23
|
eqtrd |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( R ^r J ) ^r K ) = ( _I |` ( dom ( _I |` ( dom R u. ran R ) ) u. ran ( _I |` ( dom R u. ran R ) ) ) ) ) |
25 |
|
simp3r |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> I = if ( J < K , J , K ) ) |
26 |
|
0re |
|- 0 e. RR |
27 |
26
|
ltnri |
|- -. 0 < 0 |
28 |
9 15
|
breq12d |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( J < K <-> 0 < 0 ) ) |
29 |
27 28
|
mtbiri |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> -. J < K ) |
30 |
29
|
iffalsed |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> if ( J < K , J , K ) = K ) |
31 |
25 30 15
|
3eqtrd |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> I = 0 ) |
32 |
31
|
oveq2d |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r I ) = ( R ^r 0 ) ) |
33 |
32 13
|
eqtrd |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r I ) = ( _I |` ( dom R u. ran R ) ) ) |
34 |
8 24 33
|
3eqtr4a |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) |
35 |
34
|
3exp |
|- ( J = 0 -> ( K = 0 -> ( ( R e. V /\ I = if ( J < K , J , K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
36 |
|
simp1 |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> J = 1 ) |
37 |
36
|
oveq2d |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r J ) = ( R ^r 1 ) ) |
38 |
|
simp3l |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> R e. V ) |
39 |
|
relexp1g |
|- ( R e. V -> ( R ^r 1 ) = R ) |
40 |
38 39
|
syl |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r 1 ) = R ) |
41 |
37 40
|
eqtrd |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r J ) = R ) |
42 |
|
simp2 |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> K = 0 ) |
43 |
41 42
|
oveq12d |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r 0 ) ) |
44 |
|
simp3r |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> I = if ( J < K , J , K ) ) |
45 |
|
0lt1 |
|- 0 < 1 |
46 |
|
1re |
|- 1 e. RR |
47 |
26 46
|
ltnsymi |
|- ( 0 < 1 -> -. 1 < 0 ) |
48 |
45 47
|
mp1i |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> -. 1 < 0 ) |
49 |
36 42
|
breq12d |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( J < K <-> 1 < 0 ) ) |
50 |
48 49
|
mtbird |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> -. J < K ) |
51 |
50
|
iffalsed |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> if ( J < K , J , K ) = K ) |
52 |
44 51 42
|
3eqtrd |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> I = 0 ) |
53 |
52
|
oveq2d |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r I ) = ( R ^r 0 ) ) |
54 |
43 53
|
eqtr4d |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) |
55 |
54
|
3exp |
|- ( J = 1 -> ( K = 0 -> ( ( R e. V /\ I = if ( J < K , J , K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
56 |
35 55
|
jaoi |
|- ( ( J = 0 \/ J = 1 ) -> ( K = 0 -> ( ( R e. V /\ I = if ( J < K , J , K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
57 |
|
ovex |
|- ( R ^r 0 ) e. _V |
58 |
|
relexp1g |
|- ( ( R ^r 0 ) e. _V -> ( ( R ^r 0 ) ^r 1 ) = ( R ^r 0 ) ) |
59 |
57 58
|
mp1i |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( R ^r 0 ) ^r 1 ) = ( R ^r 0 ) ) |
60 |
|
simp1 |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> J = 0 ) |
61 |
60
|
oveq2d |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r J ) = ( R ^r 0 ) ) |
62 |
|
simp2 |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> K = 1 ) |
63 |
61 62
|
oveq12d |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( R ^r J ) ^r K ) = ( ( R ^r 0 ) ^r 1 ) ) |
64 |
|
simp3r |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> I = if ( J < K , J , K ) ) |
65 |
60 62
|
breq12d |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( J < K <-> 0 < 1 ) ) |
66 |
45 65
|
mpbiri |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> J < K ) |
67 |
66
|
iftrued |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> if ( J < K , J , K ) = J ) |
68 |
64 67 60
|
3eqtrd |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> I = 0 ) |
69 |
68
|
oveq2d |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r I ) = ( R ^r 0 ) ) |
70 |
59 63 69
|
3eqtr4d |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) |
71 |
70
|
3exp |
|- ( J = 0 -> ( K = 1 -> ( ( R e. V /\ I = if ( J < K , J , K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
72 |
|
simp1 |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> J = 1 ) |
73 |
72
|
oveq2d |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r J ) = ( R ^r 1 ) ) |
74 |
|
simp3l |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> R e. V ) |
75 |
74 39
|
syl |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r 1 ) = R ) |
76 |
73 75
|
eqtrd |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r J ) = R ) |
77 |
|
simp2 |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> K = 1 ) |
78 |
76 77
|
oveq12d |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r 1 ) ) |
79 |
|
simp3r |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> I = if ( J < K , J , K ) ) |
80 |
46
|
ltnri |
|- -. 1 < 1 |
81 |
72 77
|
breq12d |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( J < K <-> 1 < 1 ) ) |
82 |
80 81
|
mtbiri |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> -. J < K ) |
83 |
82
|
iffalsed |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> if ( J < K , J , K ) = K ) |
84 |
79 83 77
|
3eqtrd |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> I = 1 ) |
85 |
84
|
oveq2d |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r I ) = ( R ^r 1 ) ) |
86 |
78 85
|
eqtr4d |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) |
87 |
86
|
3exp |
|- ( J = 1 -> ( K = 1 -> ( ( R e. V /\ I = if ( J < K , J , K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
88 |
71 87
|
jaoi |
|- ( ( J = 0 \/ J = 1 ) -> ( K = 1 -> ( ( R e. V /\ I = if ( J < K , J , K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
89 |
56 88
|
jaod |
|- ( ( J = 0 \/ J = 1 ) -> ( ( K = 0 \/ K = 1 ) -> ( ( R e. V /\ I = if ( J < K , J , K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
90 |
89
|
imp |
|- ( ( ( J = 0 \/ J = 1 ) /\ ( K = 0 \/ K = 1 ) ) -> ( ( R e. V /\ I = if ( J < K , J , K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) |
91 |
1 2 90
|
syl2an |
|- ( ( J e. { 0 , 1 } /\ K e. { 0 , 1 } ) -> ( ( R e. V /\ I = if ( J < K , J , K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) |
92 |
91
|
impcom |
|- ( ( ( R e. V /\ I = if ( J < K , J , K ) ) /\ ( J e. { 0 , 1 } /\ K e. { 0 , 1 } ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) |