Step |
Hyp |
Ref |
Expression |
1 |
|
elpri |
|- ( J e. { 0 , 1 } -> ( J = 0 \/ J = 1 ) ) |
2 |
|
elpri |
|- ( K e. { 0 , 1 } -> ( K = 0 \/ K = 1 ) ) |
3 |
|
dmresi |
|- dom ( _I |` ( dom R u. ran R ) ) = ( dom R u. ran R ) |
4 |
|
rnresi |
|- ran ( _I |` ( dom R u. ran R ) ) = ( dom R u. ran R ) |
5 |
3 4
|
uneq12i |
|- ( dom ( _I |` ( dom R u. ran R ) ) u. ran ( _I |` ( dom R u. ran R ) ) ) = ( ( dom R u. ran R ) u. ( dom R u. ran R ) ) |
6 |
|
unidm |
|- ( ( dom R u. ran R ) u. ( dom R u. ran R ) ) = ( dom R u. ran R ) |
7 |
5 6
|
eqtri |
|- ( dom ( _I |` ( dom R u. ran R ) ) u. ran ( _I |` ( dom R u. ran R ) ) ) = ( dom R u. ran R ) |
8 |
7
|
reseq2i |
|- ( _I |` ( dom ( _I |` ( dom R u. ran R ) ) u. ran ( _I |` ( dom R u. ran R ) ) ) ) = ( _I |` ( dom R u. ran R ) ) |
9 |
|
simp1 |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> J = 0 ) |
10 |
9
|
oveq2d |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r J ) = ( R ^r 0 ) ) |
11 |
|
simp3l |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> R e. V ) |
12 |
|
relexp0g |
|- ( R e. V -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
13 |
11 12
|
syl |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
14 |
10 13
|
eqtrd |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r J ) = ( _I |` ( dom R u. ran R ) ) ) |
15 |
|
simp2 |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> K = 0 ) |
16 |
14 15
|
oveq12d |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( R ^r J ) ^r K ) = ( ( _I |` ( dom R u. ran R ) ) ^r 0 ) ) |
17 |
|
dmexg |
|- ( R e. V -> dom R e. _V ) |
18 |
|
rnexg |
|- ( R e. V -> ran R e. _V ) |
19 |
17 18
|
unexd |
|- ( R e. V -> ( dom R u. ran R ) e. _V ) |
20 |
19
|
resiexd |
|- ( R e. V -> ( _I |` ( dom R u. ran R ) ) e. _V ) |
21 |
|
relexp0g |
|- ( ( _I |` ( dom R u. ran R ) ) e. _V -> ( ( _I |` ( dom R u. ran R ) ) ^r 0 ) = ( _I |` ( dom ( _I |` ( dom R u. ran R ) ) u. ran ( _I |` ( dom R u. ran R ) ) ) ) ) |
22 |
11 20 21
|
3syl |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( _I |` ( dom R u. ran R ) ) ^r 0 ) = ( _I |` ( dom ( _I |` ( dom R u. ran R ) ) u. ran ( _I |` ( dom R u. ran R ) ) ) ) ) |
23 |
16 22
|
eqtrd |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( R ^r J ) ^r K ) = ( _I |` ( dom ( _I |` ( dom R u. ran R ) ) u. ran ( _I |` ( dom R u. ran R ) ) ) ) ) |
24 |
|
simp3r |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> I = if ( J < K , J , K ) ) |
25 |
|
0re |
|- 0 e. RR |
26 |
25
|
ltnri |
|- -. 0 < 0 |
27 |
9 15
|
breq12d |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( J < K <-> 0 < 0 ) ) |
28 |
26 27
|
mtbiri |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> -. J < K ) |
29 |
28
|
iffalsed |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> if ( J < K , J , K ) = K ) |
30 |
24 29 15
|
3eqtrd |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> I = 0 ) |
31 |
30
|
oveq2d |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r I ) = ( R ^r 0 ) ) |
32 |
31 13
|
eqtrd |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r I ) = ( _I |` ( dom R u. ran R ) ) ) |
33 |
8 23 32
|
3eqtr4a |
|- ( ( J = 0 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) |
34 |
33
|
3exp |
|- ( J = 0 -> ( K = 0 -> ( ( R e. V /\ I = if ( J < K , J , K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
35 |
|
simp1 |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> J = 1 ) |
36 |
35
|
oveq2d |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r J ) = ( R ^r 1 ) ) |
37 |
|
simp3l |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> R e. V ) |
38 |
37
|
relexp1d |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r 1 ) = R ) |
39 |
36 38
|
eqtrd |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r J ) = R ) |
40 |
|
simp2 |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> K = 0 ) |
41 |
39 40
|
oveq12d |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r 0 ) ) |
42 |
|
simp3r |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> I = if ( J < K , J , K ) ) |
43 |
|
0lt1 |
|- 0 < 1 |
44 |
|
1re |
|- 1 e. RR |
45 |
25 44
|
ltnsymi |
|- ( 0 < 1 -> -. 1 < 0 ) |
46 |
43 45
|
mp1i |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> -. 1 < 0 ) |
47 |
35 40
|
breq12d |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( J < K <-> 1 < 0 ) ) |
48 |
46 47
|
mtbird |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> -. J < K ) |
49 |
48
|
iffalsed |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> if ( J < K , J , K ) = K ) |
50 |
42 49 40
|
3eqtrd |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> I = 0 ) |
51 |
50
|
oveq2d |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r I ) = ( R ^r 0 ) ) |
52 |
41 51
|
eqtr4d |
|- ( ( J = 1 /\ K = 0 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) |
53 |
52
|
3exp |
|- ( J = 1 -> ( K = 0 -> ( ( R e. V /\ I = if ( J < K , J , K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
54 |
34 53
|
jaoi |
|- ( ( J = 0 \/ J = 1 ) -> ( K = 0 -> ( ( R e. V /\ I = if ( J < K , J , K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
55 |
|
ovex |
|- ( R ^r 0 ) e. _V |
56 |
|
relexp1g |
|- ( ( R ^r 0 ) e. _V -> ( ( R ^r 0 ) ^r 1 ) = ( R ^r 0 ) ) |
57 |
55 56
|
mp1i |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( R ^r 0 ) ^r 1 ) = ( R ^r 0 ) ) |
58 |
|
simp1 |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> J = 0 ) |
59 |
58
|
oveq2d |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r J ) = ( R ^r 0 ) ) |
60 |
|
simp2 |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> K = 1 ) |
61 |
59 60
|
oveq12d |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( R ^r J ) ^r K ) = ( ( R ^r 0 ) ^r 1 ) ) |
62 |
|
simp3r |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> I = if ( J < K , J , K ) ) |
63 |
58 60
|
breq12d |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( J < K <-> 0 < 1 ) ) |
64 |
43 63
|
mpbiri |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> J < K ) |
65 |
64
|
iftrued |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> if ( J < K , J , K ) = J ) |
66 |
62 65 58
|
3eqtrd |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> I = 0 ) |
67 |
66
|
oveq2d |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r I ) = ( R ^r 0 ) ) |
68 |
57 61 67
|
3eqtr4d |
|- ( ( J = 0 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) |
69 |
68
|
3exp |
|- ( J = 0 -> ( K = 1 -> ( ( R e. V /\ I = if ( J < K , J , K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
70 |
|
simp1 |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> J = 1 ) |
71 |
70
|
oveq2d |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r J ) = ( R ^r 1 ) ) |
72 |
|
simp3l |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> R e. V ) |
73 |
72
|
relexp1d |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r 1 ) = R ) |
74 |
71 73
|
eqtrd |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r J ) = R ) |
75 |
|
simp2 |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> K = 1 ) |
76 |
74 75
|
oveq12d |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r 1 ) ) |
77 |
|
simp3r |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> I = if ( J < K , J , K ) ) |
78 |
44
|
ltnri |
|- -. 1 < 1 |
79 |
70 75
|
breq12d |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( J < K <-> 1 < 1 ) ) |
80 |
78 79
|
mtbiri |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> -. J < K ) |
81 |
80
|
iffalsed |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> if ( J < K , J , K ) = K ) |
82 |
77 81 75
|
3eqtrd |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> I = 1 ) |
83 |
82
|
oveq2d |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( R ^r I ) = ( R ^r 1 ) ) |
84 |
76 83
|
eqtr4d |
|- ( ( J = 1 /\ K = 1 /\ ( R e. V /\ I = if ( J < K , J , K ) ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) |
85 |
84
|
3exp |
|- ( J = 1 -> ( K = 1 -> ( ( R e. V /\ I = if ( J < K , J , K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
86 |
69 85
|
jaoi |
|- ( ( J = 0 \/ J = 1 ) -> ( K = 1 -> ( ( R e. V /\ I = if ( J < K , J , K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
87 |
54 86
|
jaod |
|- ( ( J = 0 \/ J = 1 ) -> ( ( K = 0 \/ K = 1 ) -> ( ( R e. V /\ I = if ( J < K , J , K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
88 |
87
|
imp |
|- ( ( ( J = 0 \/ J = 1 ) /\ ( K = 0 \/ K = 1 ) ) -> ( ( R e. V /\ I = if ( J < K , J , K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) |
89 |
1 2 88
|
syl2an |
|- ( ( J e. { 0 , 1 } /\ K e. { 0 , 1 } ) -> ( ( R e. V /\ I = if ( J < K , J , K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) |
90 |
89
|
impcom |
|- ( ( ( R e. V /\ I = if ( J < K , J , K ) ) /\ ( J e. { 0 , 1 } /\ K e. { 0 , 1 } ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) |