Metamath Proof Explorer


Theorem relexp01min

Description: With exponents limited to 0 and 1, the composition of powers of a relation is the relation raised to the minimum of exponents. (Contributed by RP, 12-Jun-2020)

Ref Expression
Assertion relexp01min R V I = if J < K J K J 0 1 K 0 1 R r J r K = R r I

Proof

Step Hyp Ref Expression
1 elpri J 0 1 J = 0 J = 1
2 elpri K 0 1 K = 0 K = 1
3 dmresi dom I dom R ran R = dom R ran R
4 rnresi ran I dom R ran R = dom R ran R
5 3 4 uneq12i dom I dom R ran R ran I dom R ran R = dom R ran R dom R ran R
6 unidm dom R ran R dom R ran R = dom R ran R
7 5 6 eqtri dom I dom R ran R ran I dom R ran R = dom R ran R
8 7 reseq2i I dom I dom R ran R ran I dom R ran R = I dom R ran R
9 simp1 J = 0 K = 0 R V I = if J < K J K J = 0
10 9 oveq2d J = 0 K = 0 R V I = if J < K J K R r J = R r 0
11 simp3l J = 0 K = 0 R V I = if J < K J K R V
12 relexp0g R V R r 0 = I dom R ran R
13 11 12 syl J = 0 K = 0 R V I = if J < K J K R r 0 = I dom R ran R
14 10 13 eqtrd J = 0 K = 0 R V I = if J < K J K R r J = I dom R ran R
15 simp2 J = 0 K = 0 R V I = if J < K J K K = 0
16 14 15 oveq12d J = 0 K = 0 R V I = if J < K J K R r J r K = I dom R ran R r 0
17 dmexg R V dom R V
18 rnexg R V ran R V
19 17 18 unexd R V dom R ran R V
20 19 resiexd R V I dom R ran R V
21 relexp0g I dom R ran R V I dom R ran R r 0 = I dom I dom R ran R ran I dom R ran R
22 11 20 21 3syl J = 0 K = 0 R V I = if J < K J K I dom R ran R r 0 = I dom I dom R ran R ran I dom R ran R
23 16 22 eqtrd J = 0 K = 0 R V I = if J < K J K R r J r K = I dom I dom R ran R ran I dom R ran R
24 simp3r J = 0 K = 0 R V I = if J < K J K I = if J < K J K
25 0re 0
26 25 ltnri ¬ 0 < 0
27 9 15 breq12d J = 0 K = 0 R V I = if J < K J K J < K 0 < 0
28 26 27 mtbiri J = 0 K = 0 R V I = if J < K J K ¬ J < K
29 28 iffalsed J = 0 K = 0 R V I = if J < K J K if J < K J K = K
30 24 29 15 3eqtrd J = 0 K = 0 R V I = if J < K J K I = 0
31 30 oveq2d J = 0 K = 0 R V I = if J < K J K R r I = R r 0
32 31 13 eqtrd J = 0 K = 0 R V I = if J < K J K R r I = I dom R ran R
33 8 23 32 3eqtr4a J = 0 K = 0 R V I = if J < K J K R r J r K = R r I
34 33 3exp J = 0 K = 0 R V I = if J < K J K R r J r K = R r I
35 simp1 J = 1 K = 0 R V I = if J < K J K J = 1
36 35 oveq2d J = 1 K = 0 R V I = if J < K J K R r J = R r 1
37 simp3l J = 1 K = 0 R V I = if J < K J K R V
38 37 relexp1d J = 1 K = 0 R V I = if J < K J K R r 1 = R
39 36 38 eqtrd J = 1 K = 0 R V I = if J < K J K R r J = R
40 simp2 J = 1 K = 0 R V I = if J < K J K K = 0
41 39 40 oveq12d J = 1 K = 0 R V I = if J < K J K R r J r K = R r 0
42 simp3r J = 1 K = 0 R V I = if J < K J K I = if J < K J K
43 0lt1 0 < 1
44 1re 1
45 25 44 ltnsymi 0 < 1 ¬ 1 < 0
46 43 45 mp1i J = 1 K = 0 R V I = if J < K J K ¬ 1 < 0
47 35 40 breq12d J = 1 K = 0 R V I = if J < K J K J < K 1 < 0
48 46 47 mtbird J = 1 K = 0 R V I = if J < K J K ¬ J < K
49 48 iffalsed J = 1 K = 0 R V I = if J < K J K if J < K J K = K
50 42 49 40 3eqtrd J = 1 K = 0 R V I = if J < K J K I = 0
51 50 oveq2d J = 1 K = 0 R V I = if J < K J K R r I = R r 0
52 41 51 eqtr4d J = 1 K = 0 R V I = if J < K J K R r J r K = R r I
53 52 3exp J = 1 K = 0 R V I = if J < K J K R r J r K = R r I
54 34 53 jaoi J = 0 J = 1 K = 0 R V I = if J < K J K R r J r K = R r I
55 ovex R r 0 V
56 relexp1g R r 0 V R r 0 r 1 = R r 0
57 55 56 mp1i J = 0 K = 1 R V I = if J < K J K R r 0 r 1 = R r 0
58 simp1 J = 0 K = 1 R V I = if J < K J K J = 0
59 58 oveq2d J = 0 K = 1 R V I = if J < K J K R r J = R r 0
60 simp2 J = 0 K = 1 R V I = if J < K J K K = 1
61 59 60 oveq12d J = 0 K = 1 R V I = if J < K J K R r J r K = R r 0 r 1
62 simp3r J = 0 K = 1 R V I = if J < K J K I = if J < K J K
63 58 60 breq12d J = 0 K = 1 R V I = if J < K J K J < K 0 < 1
64 43 63 mpbiri J = 0 K = 1 R V I = if J < K J K J < K
65 64 iftrued J = 0 K = 1 R V I = if J < K J K if J < K J K = J
66 62 65 58 3eqtrd J = 0 K = 1 R V I = if J < K J K I = 0
67 66 oveq2d J = 0 K = 1 R V I = if J < K J K R r I = R r 0
68 57 61 67 3eqtr4d J = 0 K = 1 R V I = if J < K J K R r J r K = R r I
69 68 3exp J = 0 K = 1 R V I = if J < K J K R r J r K = R r I
70 simp1 J = 1 K = 1 R V I = if J < K J K J = 1
71 70 oveq2d J = 1 K = 1 R V I = if J < K J K R r J = R r 1
72 simp3l J = 1 K = 1 R V I = if J < K J K R V
73 72 relexp1d J = 1 K = 1 R V I = if J < K J K R r 1 = R
74 71 73 eqtrd J = 1 K = 1 R V I = if J < K J K R r J = R
75 simp2 J = 1 K = 1 R V I = if J < K J K K = 1
76 74 75 oveq12d J = 1 K = 1 R V I = if J < K J K R r J r K = R r 1
77 simp3r J = 1 K = 1 R V I = if J < K J K I = if J < K J K
78 44 ltnri ¬ 1 < 1
79 70 75 breq12d J = 1 K = 1 R V I = if J < K J K J < K 1 < 1
80 78 79 mtbiri J = 1 K = 1 R V I = if J < K J K ¬ J < K
81 80 iffalsed J = 1 K = 1 R V I = if J < K J K if J < K J K = K
82 77 81 75 3eqtrd J = 1 K = 1 R V I = if J < K J K I = 1
83 82 oveq2d J = 1 K = 1 R V I = if J < K J K R r I = R r 1
84 76 83 eqtr4d J = 1 K = 1 R V I = if J < K J K R r J r K = R r I
85 84 3exp J = 1 K = 1 R V I = if J < K J K R r J r K = R r I
86 69 85 jaoi J = 0 J = 1 K = 1 R V I = if J < K J K R r J r K = R r I
87 54 86 jaod J = 0 J = 1 K = 0 K = 1 R V I = if J < K J K R r J r K = R r I
88 87 imp J = 0 J = 1 K = 0 K = 1 R V I = if J < K J K R r J r K = R r I
89 1 2 88 syl2an J 0 1 K 0 1 R V I = if J < K J K R r J r K = R r I
90 89 impcom R V I = if J < K J K J 0 1 K 0 1 R r J r K = R r I