Step |
Hyp |
Ref |
Expression |
1 |
|
elpri |
|
2 |
|
elpri |
|
3 |
|
dmresi |
|
4 |
|
rnresi |
|
5 |
3 4
|
uneq12i |
|
6 |
|
unidm |
|
7 |
5 6
|
eqtri |
|
8 |
7
|
reseq2i |
|
9 |
|
simp1 |
|
10 |
9
|
oveq2d |
|
11 |
|
simp3l |
|
12 |
|
relexp0g |
|
13 |
11 12
|
syl |
|
14 |
10 13
|
eqtrd |
|
15 |
|
simp2 |
|
16 |
14 15
|
oveq12d |
|
17 |
|
dmexg |
|
18 |
|
rnexg |
|
19 |
17 18
|
unexd |
|
20 |
19
|
resiexd |
|
21 |
|
relexp0g |
|
22 |
11 20 21
|
3syl |
|
23 |
16 22
|
eqtrd |
|
24 |
|
simp3r |
|
25 |
|
0re |
|
26 |
25
|
ltnri |
|
27 |
9 15
|
breq12d |
|
28 |
26 27
|
mtbiri |
|
29 |
28
|
iffalsed |
|
30 |
24 29 15
|
3eqtrd |
|
31 |
30
|
oveq2d |
|
32 |
31 13
|
eqtrd |
|
33 |
8 23 32
|
3eqtr4a |
|
34 |
33
|
3exp |
|
35 |
|
simp1 |
|
36 |
35
|
oveq2d |
|
37 |
|
simp3l |
|
38 |
37
|
relexp1d |
|
39 |
36 38
|
eqtrd |
|
40 |
|
simp2 |
|
41 |
39 40
|
oveq12d |
|
42 |
|
simp3r |
|
43 |
|
0lt1 |
|
44 |
|
1re |
|
45 |
25 44
|
ltnsymi |
|
46 |
43 45
|
mp1i |
|
47 |
35 40
|
breq12d |
|
48 |
46 47
|
mtbird |
|
49 |
48
|
iffalsed |
|
50 |
42 49 40
|
3eqtrd |
|
51 |
50
|
oveq2d |
|
52 |
41 51
|
eqtr4d |
|
53 |
52
|
3exp |
|
54 |
34 53
|
jaoi |
|
55 |
|
ovex |
|
56 |
|
relexp1g |
|
57 |
55 56
|
mp1i |
|
58 |
|
simp1 |
|
59 |
58
|
oveq2d |
|
60 |
|
simp2 |
|
61 |
59 60
|
oveq12d |
|
62 |
|
simp3r |
|
63 |
58 60
|
breq12d |
|
64 |
43 63
|
mpbiri |
|
65 |
64
|
iftrued |
|
66 |
62 65 58
|
3eqtrd |
|
67 |
66
|
oveq2d |
|
68 |
57 61 67
|
3eqtr4d |
|
69 |
68
|
3exp |
|
70 |
|
simp1 |
|
71 |
70
|
oveq2d |
|
72 |
|
simp3l |
|
73 |
72
|
relexp1d |
|
74 |
71 73
|
eqtrd |
|
75 |
|
simp2 |
|
76 |
74 75
|
oveq12d |
|
77 |
|
simp3r |
|
78 |
44
|
ltnri |
|
79 |
70 75
|
breq12d |
|
80 |
78 79
|
mtbiri |
|
81 |
80
|
iffalsed |
|
82 |
77 81 75
|
3eqtrd |
|
83 |
82
|
oveq2d |
|
84 |
76 83
|
eqtr4d |
|
85 |
84
|
3exp |
|
86 |
69 85
|
jaoi |
|
87 |
54 86
|
jaod |
|
88 |
87
|
imp |
|
89 |
1 2 88
|
syl2an |
|
90 |
89
|
impcom |
|