Metamath Proof Explorer
		
		
		
		Description:  The composition of subclasses of a transitive relation is a subclass of
       that relation.  (Contributed by RP, 24-Dec-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | trrelssd.r | ⊢ ( 𝜑  →  ( 𝑅  ∘  𝑅 )  ⊆  𝑅 ) | 
					
						|  |  | trrelssd.s | ⊢ ( 𝜑  →  𝑆  ⊆  𝑅 ) | 
					
						|  |  | trrelssd.t | ⊢ ( 𝜑  →  𝑇  ⊆  𝑅 ) | 
				
					|  | Assertion | trrelssd | ⊢  ( 𝜑  →  ( 𝑆  ∘  𝑇 )  ⊆  𝑅 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | trrelssd.r | ⊢ ( 𝜑  →  ( 𝑅  ∘  𝑅 )  ⊆  𝑅 ) | 
						
							| 2 |  | trrelssd.s | ⊢ ( 𝜑  →  𝑆  ⊆  𝑅 ) | 
						
							| 3 |  | trrelssd.t | ⊢ ( 𝜑  →  𝑇  ⊆  𝑅 ) | 
						
							| 4 | 2 3 | coss12d | ⊢ ( 𝜑  →  ( 𝑆  ∘  𝑇 )  ⊆  ( 𝑅  ∘  𝑅 ) ) | 
						
							| 5 | 4 1 | sstrd | ⊢ ( 𝜑  →  ( 𝑆  ∘  𝑇 )  ⊆  𝑅 ) |