| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coss12d.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| 2 |
|
coss12d.c |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐷 ) |
| 3 |
2
|
ssbrd |
⊢ ( 𝜑 → ( 𝑥 𝐶 𝑦 → 𝑥 𝐷 𝑦 ) ) |
| 4 |
1
|
ssbrd |
⊢ ( 𝜑 → ( 𝑦 𝐴 𝑧 → 𝑦 𝐵 𝑧 ) ) |
| 5 |
3 4
|
anim12d |
⊢ ( 𝜑 → ( ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) → ( 𝑥 𝐷 𝑦 ∧ 𝑦 𝐵 𝑧 ) ) ) |
| 6 |
5
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) → ∃ 𝑦 ( 𝑥 𝐷 𝑦 ∧ 𝑦 𝐵 𝑧 ) ) ) |
| 7 |
6
|
ssopab2dv |
⊢ ( 𝜑 → { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) } ⊆ { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐷 𝑦 ∧ 𝑦 𝐵 𝑧 ) } ) |
| 8 |
|
df-co |
⊢ ( 𝐴 ∘ 𝐶 ) = { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦 ∧ 𝑦 𝐴 𝑧 ) } |
| 9 |
|
df-co |
⊢ ( 𝐵 ∘ 𝐷 ) = { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 𝐷 𝑦 ∧ 𝑦 𝐵 𝑧 ) } |
| 10 |
7 8 9
|
3sstr4g |
⊢ ( 𝜑 → ( 𝐴 ∘ 𝐶 ) ⊆ ( 𝐵 ∘ 𝐷 ) ) |