Metamath Proof Explorer


Theorem coss12d

Description: Subset deduction for composition of two classes. (Contributed by RP, 24-Dec-2019)

Ref Expression
Hypotheses coss12d.a ( 𝜑𝐴𝐵 )
coss12d.c ( 𝜑𝐶𝐷 )
Assertion coss12d ( 𝜑 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐷 ) )

Proof

Step Hyp Ref Expression
1 coss12d.a ( 𝜑𝐴𝐵 )
2 coss12d.c ( 𝜑𝐶𝐷 )
3 2 ssbrd ( 𝜑 → ( 𝑥 𝐶 𝑦𝑥 𝐷 𝑦 ) )
4 1 ssbrd ( 𝜑 → ( 𝑦 𝐴 𝑧𝑦 𝐵 𝑧 ) )
5 3 4 anim12d ( 𝜑 → ( ( 𝑥 𝐶 𝑦𝑦 𝐴 𝑧 ) → ( 𝑥 𝐷 𝑦𝑦 𝐵 𝑧 ) ) )
6 5 eximdv ( 𝜑 → ( ∃ 𝑦 ( 𝑥 𝐶 𝑦𝑦 𝐴 𝑧 ) → ∃ 𝑦 ( 𝑥 𝐷 𝑦𝑦 𝐵 𝑧 ) ) )
7 6 ssopab2dv ( 𝜑 → { ⟨ 𝑥 , 𝑧 ⟩ ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦𝑦 𝐴 𝑧 ) } ⊆ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ∃ 𝑦 ( 𝑥 𝐷 𝑦𝑦 𝐵 𝑧 ) } )
8 df-co ( 𝐴𝐶 ) = { ⟨ 𝑥 , 𝑧 ⟩ ∣ ∃ 𝑦 ( 𝑥 𝐶 𝑦𝑦 𝐴 𝑧 ) }
9 df-co ( 𝐵𝐷 ) = { ⟨ 𝑥 , 𝑧 ⟩ ∣ ∃ 𝑦 ( 𝑥 𝐷 𝑦𝑦 𝐵 𝑧 ) }
10 7 8 9 3sstr4g ( 𝜑 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐷 ) )