| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coss12d.a |
|- ( ph -> A C_ B ) |
| 2 |
|
coss12d.c |
|- ( ph -> C C_ D ) |
| 3 |
2
|
ssbrd |
|- ( ph -> ( x C y -> x D y ) ) |
| 4 |
1
|
ssbrd |
|- ( ph -> ( y A z -> y B z ) ) |
| 5 |
3 4
|
anim12d |
|- ( ph -> ( ( x C y /\ y A z ) -> ( x D y /\ y B z ) ) ) |
| 6 |
5
|
eximdv |
|- ( ph -> ( E. y ( x C y /\ y A z ) -> E. y ( x D y /\ y B z ) ) ) |
| 7 |
6
|
ssopab2dv |
|- ( ph -> { <. x , z >. | E. y ( x C y /\ y A z ) } C_ { <. x , z >. | E. y ( x D y /\ y B z ) } ) |
| 8 |
|
df-co |
|- ( A o. C ) = { <. x , z >. | E. y ( x C y /\ y A z ) } |
| 9 |
|
df-co |
|- ( B o. D ) = { <. x , z >. | E. y ( x D y /\ y B z ) } |
| 10 |
7 8 9
|
3sstr4g |
|- ( ph -> ( A o. C ) C_ ( B o. D ) ) |