Description: The composition of subclasses of a transitive relation is a subclass of that relation. (Contributed by RP, 24-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trrelssd.r | |- ( ph -> ( R o. R ) C_ R ) |
|
| trrelssd.s | |- ( ph -> S C_ R ) |
||
| trrelssd.t | |- ( ph -> T C_ R ) |
||
| Assertion | trrelssd | |- ( ph -> ( S o. T ) C_ R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trrelssd.r | |- ( ph -> ( R o. R ) C_ R ) |
|
| 2 | trrelssd.s | |- ( ph -> S C_ R ) |
|
| 3 | trrelssd.t | |- ( ph -> T C_ R ) |
|
| 4 | 2 3 | coss12d | |- ( ph -> ( S o. T ) C_ ( R o. R ) ) |
| 5 | 4 1 | sstrd | |- ( ph -> ( S o. T ) C_ R ) |