Metamath Proof Explorer


Theorem trrelssd

Description: The composition of subclasses of a transitive relation is a subclass of that relation. (Contributed by RP, 24-Dec-2019)

Ref Expression
Hypotheses trrelssd.r φRRR
trrelssd.s φSR
trrelssd.t φTR
Assertion trrelssd φSTR

Proof

Step Hyp Ref Expression
1 trrelssd.r φRRR
2 trrelssd.s φSR
3 trrelssd.t φTR
4 2 3 coss12d φSTRR
5 4 1 sstrd φSTR