| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpcogend.1 |
⊢ ( 𝜑 → ( 𝐵 ∩ 𝐶 ) ≠ ∅ ) |
| 2 |
|
brxp |
⊢ ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 3 |
|
brxp |
⊢ ( 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ↔ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) ) |
| 4 |
3
|
biancomi |
⊢ ( 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ↔ ( 𝑧 ∈ 𝐷 ∧ 𝑦 ∈ 𝐶 ) ) |
| 5 |
2 4
|
anbi12i |
⊢ ( ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 6 |
5
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ) ↔ ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 7 |
|
an4 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 8 |
7
|
exbii |
⊢ ( ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 9 |
|
19.42v |
⊢ ( ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 10 |
6 8 9
|
3bitri |
⊢ ( ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 11 |
|
ndisj |
⊢ ( ( 𝐵 ∩ 𝐶 ) ≠ ∅ ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) |
| 12 |
1 11
|
sylib |
⊢ ( 𝜑 → ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) |
| 13 |
12
|
biantrud |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) ) |
| 14 |
10 13
|
bitr4id |
⊢ ( 𝜑 → ( ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ) ) |
| 15 |
14
|
opabbidv |
⊢ ( 𝜑 → { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ) } = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) } ) |
| 16 |
|
df-co |
⊢ ( ( 𝐶 × 𝐷 ) ∘ ( 𝐴 × 𝐵 ) ) = { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ) } |
| 17 |
|
df-xp |
⊢ ( 𝐴 × 𝐷 ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) } |
| 18 |
15 16 17
|
3eqtr4g |
⊢ ( 𝜑 → ( ( 𝐶 × 𝐷 ) ∘ ( 𝐴 × 𝐵 ) ) = ( 𝐴 × 𝐷 ) ) |