| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
⊢ ( 𝐽 ∈ ℕ0 ↔ ( 𝐽 ∈ ℕ ∨ 𝐽 = 0 ) ) |
| 2 |
|
elnn0 |
⊢ ( 𝐾 ∈ ℕ0 ↔ ( 𝐾 ∈ ℕ ∨ 𝐾 = 0 ) ) |
| 3 |
|
relexpmulnn |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ) ∧ ( 𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) |
| 4 |
3
|
3adantl3 |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) ∧ ( 𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) |
| 5 |
4
|
expcom |
⊢ ( ( 𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) |
| 6 |
5
|
expcom |
⊢ ( 𝐾 ∈ ℕ → ( 𝐽 ∈ ℕ → ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) ) |
| 7 |
|
simprr |
⊢ ( ( ( 𝐾 = 0 ∧ 𝐽 ∈ ℕ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ) ) → 𝐼 = ( 𝐽 · 𝐾 ) ) |
| 8 |
|
simpll |
⊢ ( ( ( 𝐾 = 0 ∧ 𝐽 ∈ ℕ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ) ) → 𝐾 = 0 ) |
| 9 |
8
|
oveq2d |
⊢ ( ( ( 𝐾 = 0 ∧ 𝐽 ∈ ℕ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ) ) → ( 𝐽 · 𝐾 ) = ( 𝐽 · 0 ) ) |
| 10 |
|
simplr |
⊢ ( ( ( 𝐾 = 0 ∧ 𝐽 ∈ ℕ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ) ) → 𝐽 ∈ ℕ ) |
| 11 |
10
|
nncnd |
⊢ ( ( ( 𝐾 = 0 ∧ 𝐽 ∈ ℕ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ) ) → 𝐽 ∈ ℂ ) |
| 12 |
11
|
mul01d |
⊢ ( ( ( 𝐾 = 0 ∧ 𝐽 ∈ ℕ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ) ) → ( 𝐽 · 0 ) = 0 ) |
| 13 |
7 9 12
|
3eqtrd |
⊢ ( ( ( 𝐾 = 0 ∧ 𝐽 ∈ ℕ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ) ) → 𝐼 = 0 ) |
| 14 |
|
simpl |
⊢ ( ( ( 𝐾 = 0 ∧ 𝐽 ∈ ℕ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ) ) → ( 𝐾 = 0 ∧ 𝐽 ∈ ℕ ) ) |
| 15 |
|
nnnle0 |
⊢ ( 𝐽 ∈ ℕ → ¬ 𝐽 ≤ 0 ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝐾 = 0 ∧ 𝐽 ∈ ℕ ) → ¬ 𝐽 ≤ 0 ) |
| 17 |
|
simpl |
⊢ ( ( 𝐾 = 0 ∧ 𝐽 ∈ ℕ ) → 𝐾 = 0 ) |
| 18 |
17
|
breq2d |
⊢ ( ( 𝐾 = 0 ∧ 𝐽 ∈ ℕ ) → ( 𝐽 ≤ 𝐾 ↔ 𝐽 ≤ 0 ) ) |
| 19 |
16 18
|
mtbird |
⊢ ( ( 𝐾 = 0 ∧ 𝐽 ∈ ℕ ) → ¬ 𝐽 ≤ 𝐾 ) |
| 20 |
14 19
|
syl |
⊢ ( ( ( 𝐾 = 0 ∧ 𝐽 ∈ ℕ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ) ) → ¬ 𝐽 ≤ 𝐾 ) |
| 21 |
13 20
|
jcnd |
⊢ ( ( ( 𝐾 = 0 ∧ 𝐽 ∈ ℕ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ) ) → ¬ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) |
| 22 |
21
|
pm2.21d |
⊢ ( ( ( 𝐾 = 0 ∧ 𝐽 ∈ ℕ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ) ) → ( ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) |
| 23 |
22
|
exp32 |
⊢ ( ( 𝐾 = 0 ∧ 𝐽 ∈ ℕ ) → ( 𝑅 ∈ 𝑉 → ( 𝐼 = ( 𝐽 · 𝐾 ) → ( ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) ) ) |
| 24 |
23
|
3impd |
⊢ ( ( 𝐾 = 0 ∧ 𝐽 ∈ ℕ ) → ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) |
| 25 |
24
|
ex |
⊢ ( 𝐾 = 0 → ( 𝐽 ∈ ℕ → ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) ) |
| 26 |
6 25
|
jaoi |
⊢ ( ( 𝐾 ∈ ℕ ∨ 𝐾 = 0 ) → ( 𝐽 ∈ ℕ → ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) ) |
| 27 |
2 26
|
sylbi |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝐽 ∈ ℕ → ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) ) |
| 28 |
|
simplr |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝐽 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) ) → 𝐽 = 0 ) |
| 29 |
28
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝐽 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) ) → ( 𝑅 ↑𝑟 𝐽 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 30 |
|
simpr1 |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝐽 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) ) → 𝑅 ∈ 𝑉 ) |
| 31 |
|
relexp0g |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 32 |
30 31
|
syl |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝐽 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) ) → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 33 |
29 32
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝐽 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) ) → ( 𝑅 ↑𝑟 𝐽 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 34 |
33
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝐽 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ↑𝑟 𝐾 ) ) |
| 35 |
|
dmexg |
⊢ ( 𝑅 ∈ 𝑉 → dom 𝑅 ∈ V ) |
| 36 |
|
rnexg |
⊢ ( 𝑅 ∈ 𝑉 → ran 𝑅 ∈ V ) |
| 37 |
35 36
|
unexd |
⊢ ( 𝑅 ∈ 𝑉 → ( dom 𝑅 ∪ ran 𝑅 ) ∈ V ) |
| 38 |
30 37
|
syl |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝐽 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) ) → ( dom 𝑅 ∪ ran 𝑅 ) ∈ V ) |
| 39 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝐽 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) ) → 𝐾 ∈ ℕ0 ) |
| 40 |
|
relexpiidm |
⊢ ( ( ( dom 𝑅 ∪ ran 𝑅 ) ∈ V ∧ 𝐾 ∈ ℕ0 ) → ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ↑𝑟 𝐾 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 41 |
38 39 40
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝐽 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) ) → ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ↑𝑟 𝐾 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 42 |
|
simpr2 |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝐽 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) ) → 𝐼 = ( 𝐽 · 𝐾 ) ) |
| 43 |
28
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝐽 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) ) → ( 𝐽 · 𝐾 ) = ( 0 · 𝐾 ) ) |
| 44 |
39
|
nn0cnd |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝐽 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) ) → 𝐾 ∈ ℂ ) |
| 45 |
44
|
mul02d |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝐽 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) ) → ( 0 · 𝐾 ) = 0 ) |
| 46 |
42 43 45
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝐽 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) ) → 𝐼 = 0 ) |
| 47 |
46
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝐽 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) ) → ( 𝑅 ↑𝑟 𝐼 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 48 |
47 32
|
eqtr2d |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝐽 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) ) → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅 ↑𝑟 𝐼 ) ) |
| 49 |
34 41 48
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝐽 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) |
| 50 |
49
|
ex |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐽 = 0 ) → ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) |
| 51 |
50
|
ex |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝐽 = 0 → ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) ) |
| 52 |
27 51
|
jaod |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 𝐽 ∈ ℕ ∨ 𝐽 = 0 ) → ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) ) |
| 53 |
1 52
|
biimtrid |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝐽 ∈ ℕ0 → ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) ) |
| 54 |
53
|
impcom |
⊢ ( ( 𝐽 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) ) |
| 55 |
54
|
impcom |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 = ( 𝐽 · 𝐾 ) ∧ ( 𝐼 = 0 → 𝐽 ≤ 𝐾 ) ) ∧ ( 𝐽 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) ) → ( ( 𝑅 ↑𝑟 𝐽 ) ↑𝑟 𝐾 ) = ( 𝑅 ↑𝑟 𝐼 ) ) |