Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( ( I ↾ 𝐴 ) ↑𝑟 𝑥 ) = ( ( I ↾ 𝐴 ) ↑𝑟 0 ) ) |
2 |
1
|
eqeq1d |
⊢ ( 𝑥 = 0 → ( ( ( I ↾ 𝐴 ) ↑𝑟 𝑥 ) = ( I ↾ 𝐴 ) ↔ ( ( I ↾ 𝐴 ) ↑𝑟 0 ) = ( I ↾ 𝐴 ) ) ) |
3 |
2
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝐴 ∈ 𝑉 → ( ( I ↾ 𝐴 ) ↑𝑟 𝑥 ) = ( I ↾ 𝐴 ) ) ↔ ( 𝐴 ∈ 𝑉 → ( ( I ↾ 𝐴 ) ↑𝑟 0 ) = ( I ↾ 𝐴 ) ) ) ) |
4 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( I ↾ 𝐴 ) ↑𝑟 𝑥 ) = ( ( I ↾ 𝐴 ) ↑𝑟 𝑦 ) ) |
5 |
4
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( I ↾ 𝐴 ) ↑𝑟 𝑥 ) = ( I ↾ 𝐴 ) ↔ ( ( I ↾ 𝐴 ) ↑𝑟 𝑦 ) = ( I ↾ 𝐴 ) ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ 𝑉 → ( ( I ↾ 𝐴 ) ↑𝑟 𝑥 ) = ( I ↾ 𝐴 ) ) ↔ ( 𝐴 ∈ 𝑉 → ( ( I ↾ 𝐴 ) ↑𝑟 𝑦 ) = ( I ↾ 𝐴 ) ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( I ↾ 𝐴 ) ↑𝑟 𝑥 ) = ( ( I ↾ 𝐴 ) ↑𝑟 ( 𝑦 + 1 ) ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( I ↾ 𝐴 ) ↑𝑟 𝑥 ) = ( I ↾ 𝐴 ) ↔ ( ( I ↾ 𝐴 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( I ↾ 𝐴 ) ) ) |
9 |
8
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐴 ∈ 𝑉 → ( ( I ↾ 𝐴 ) ↑𝑟 𝑥 ) = ( I ↾ 𝐴 ) ) ↔ ( 𝐴 ∈ 𝑉 → ( ( I ↾ 𝐴 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( I ↾ 𝐴 ) ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( ( I ↾ 𝐴 ) ↑𝑟 𝑥 ) = ( ( I ↾ 𝐴 ) ↑𝑟 𝑁 ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑥 = 𝑁 → ( ( ( I ↾ 𝐴 ) ↑𝑟 𝑥 ) = ( I ↾ 𝐴 ) ↔ ( ( I ↾ 𝐴 ) ↑𝑟 𝑁 ) = ( I ↾ 𝐴 ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐴 ∈ 𝑉 → ( ( I ↾ 𝐴 ) ↑𝑟 𝑥 ) = ( I ↾ 𝐴 ) ) ↔ ( 𝐴 ∈ 𝑉 → ( ( I ↾ 𝐴 ) ↑𝑟 𝑁 ) = ( I ↾ 𝐴 ) ) ) ) |
13 |
|
resiexg |
⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) ∈ V ) |
14 |
|
relexp0g |
⊢ ( ( I ↾ 𝐴 ) ∈ V → ( ( I ↾ 𝐴 ) ↑𝑟 0 ) = ( I ↾ ( dom ( I ↾ 𝐴 ) ∪ ran ( I ↾ 𝐴 ) ) ) ) |
15 |
13 14
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( ( I ↾ 𝐴 ) ↑𝑟 0 ) = ( I ↾ ( dom ( I ↾ 𝐴 ) ∪ ran ( I ↾ 𝐴 ) ) ) ) |
16 |
|
dmresi |
⊢ dom ( I ↾ 𝐴 ) = 𝐴 |
17 |
|
rnresi |
⊢ ran ( I ↾ 𝐴 ) = 𝐴 |
18 |
16 17
|
uneq12i |
⊢ ( dom ( I ↾ 𝐴 ) ∪ ran ( I ↾ 𝐴 ) ) = ( 𝐴 ∪ 𝐴 ) |
19 |
|
unidm |
⊢ ( 𝐴 ∪ 𝐴 ) = 𝐴 |
20 |
18 19
|
eqtri |
⊢ ( dom ( I ↾ 𝐴 ) ∪ ran ( I ↾ 𝐴 ) ) = 𝐴 |
21 |
20
|
reseq2i |
⊢ ( I ↾ ( dom ( I ↾ 𝐴 ) ∪ ran ( I ↾ 𝐴 ) ) ) = ( I ↾ 𝐴 ) |
22 |
15 21
|
eqtrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( ( I ↾ 𝐴 ) ↑𝑟 0 ) = ( I ↾ 𝐴 ) ) |
23 |
|
relres |
⊢ Rel ( I ↾ 𝐴 ) |
24 |
23
|
a1i |
⊢ ( ( ( ( I ↾ 𝐴 ) ↑𝑟 𝑦 ) = ( I ↾ 𝐴 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ℕ0 ) → Rel ( I ↾ 𝐴 ) ) |
25 |
|
simp3 |
⊢ ( ( ( ( I ↾ 𝐴 ) ↑𝑟 𝑦 ) = ( I ↾ 𝐴 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℕ0 ) |
26 |
24 25
|
relexpsucrd |
⊢ ( ( ( ( I ↾ 𝐴 ) ↑𝑟 𝑦 ) = ( I ↾ 𝐴 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ℕ0 ) → ( ( I ↾ 𝐴 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( ( ( I ↾ 𝐴 ) ↑𝑟 𝑦 ) ∘ ( I ↾ 𝐴 ) ) ) |
27 |
|
simp1 |
⊢ ( ( ( ( I ↾ 𝐴 ) ↑𝑟 𝑦 ) = ( I ↾ 𝐴 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ℕ0 ) → ( ( I ↾ 𝐴 ) ↑𝑟 𝑦 ) = ( I ↾ 𝐴 ) ) |
28 |
27
|
coeq1d |
⊢ ( ( ( ( I ↾ 𝐴 ) ↑𝑟 𝑦 ) = ( I ↾ 𝐴 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( I ↾ 𝐴 ) ↑𝑟 𝑦 ) ∘ ( I ↾ 𝐴 ) ) = ( ( I ↾ 𝐴 ) ∘ ( I ↾ 𝐴 ) ) ) |
29 |
|
coires1 |
⊢ ( ( I ↾ 𝐴 ) ∘ ( I ↾ 𝐴 ) ) = ( ( I ↾ 𝐴 ) ↾ 𝐴 ) |
30 |
|
residm |
⊢ ( ( I ↾ 𝐴 ) ↾ 𝐴 ) = ( I ↾ 𝐴 ) |
31 |
29 30
|
eqtri |
⊢ ( ( I ↾ 𝐴 ) ∘ ( I ↾ 𝐴 ) ) = ( I ↾ 𝐴 ) |
32 |
28 31
|
eqtrdi |
⊢ ( ( ( ( I ↾ 𝐴 ) ↑𝑟 𝑦 ) = ( I ↾ 𝐴 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( I ↾ 𝐴 ) ↑𝑟 𝑦 ) ∘ ( I ↾ 𝐴 ) ) = ( I ↾ 𝐴 ) ) |
33 |
26 32
|
eqtrd |
⊢ ( ( ( ( I ↾ 𝐴 ) ↑𝑟 𝑦 ) = ( I ↾ 𝐴 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ℕ0 ) → ( ( I ↾ 𝐴 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( I ↾ 𝐴 ) ) |
34 |
33
|
3exp |
⊢ ( ( ( I ↾ 𝐴 ) ↑𝑟 𝑦 ) = ( I ↾ 𝐴 ) → ( 𝐴 ∈ 𝑉 → ( 𝑦 ∈ ℕ0 → ( ( I ↾ 𝐴 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( I ↾ 𝐴 ) ) ) ) |
35 |
34
|
com13 |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝐴 ∈ 𝑉 → ( ( ( I ↾ 𝐴 ) ↑𝑟 𝑦 ) = ( I ↾ 𝐴 ) → ( ( I ↾ 𝐴 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( I ↾ 𝐴 ) ) ) ) |
36 |
35
|
a2d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝐴 ∈ 𝑉 → ( ( I ↾ 𝐴 ) ↑𝑟 𝑦 ) = ( I ↾ 𝐴 ) ) → ( 𝐴 ∈ 𝑉 → ( ( I ↾ 𝐴 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( I ↾ 𝐴 ) ) ) ) |
37 |
3 6 9 12 22 36
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ∈ 𝑉 → ( ( I ↾ 𝐴 ) ↑𝑟 𝑁 ) = ( I ↾ 𝐴 ) ) ) |
38 |
37
|
impcom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( I ↾ 𝐴 ) ↑𝑟 𝑁 ) = ( I ↾ 𝐴 ) ) |